Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import librosa
|
|
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
import sounddevice as sd
|
@@ -54,14 +55,15 @@ def process_audio(audio_file, breath_in_time, breath_out_time):
|
|
54 |
plt.title("Audio Waveform with Inhale/Exhale Segments")
|
55 |
plt.xlabel("Time (s)")
|
56 |
plt.ylabel("Amplitude")
|
57 |
-
|
|
|
58 |
plt.close()
|
59 |
|
60 |
result_table = "Segment\tType\tDuration (s)\tAmplitude\n" + "\n".join(
|
61 |
f"{row['Segment']}\t{row['Type']}\t{row['Duration (s)']}\t{row['Amplitude']}" for row in results
|
62 |
)
|
63 |
|
64 |
-
return result_table,
|
65 |
|
66 |
except Exception as e:
|
67 |
return f"Error: {str(e)}", None
|
@@ -125,8 +127,7 @@ with gr.Blocks() as demo:
|
|
125 |
}
|
126 |
</script>
|
127 |
"""):
|
128 |
-
|
129 |
-
|
130 |
|
131 |
def handle_record_and_visualize(breath_in, breath_out):
|
132 |
total_duration = breath_in + breath_out
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import librosa
|
4 |
+
import librosa.display
|
5 |
import numpy as np
|
6 |
import matplotlib.pyplot as plt
|
7 |
import sounddevice as sd
|
|
|
55 |
plt.title("Audio Waveform with Inhale/Exhale Segments")
|
56 |
plt.xlabel("Time (s)")
|
57 |
plt.ylabel("Amplitude")
|
58 |
+
waveform_file = "waveform_highlighted.png"
|
59 |
+
plt.savefig(waveform_file)
|
60 |
plt.close()
|
61 |
|
62 |
result_table = "Segment\tType\tDuration (s)\tAmplitude\n" + "\n".join(
|
63 |
f"{row['Segment']}\t{row['Type']}\t{row['Duration (s)']}\t{row['Amplitude']}" for row in results
|
64 |
)
|
65 |
|
66 |
+
return result_table, waveform_file
|
67 |
|
68 |
except Exception as e:
|
69 |
return f"Error: {str(e)}", None
|
|
|
127 |
}
|
128 |
</script>
|
129 |
"""):
|
130 |
+
pass # Ensure this is indented properly
|
|
|
131 |
|
132 |
def handle_record_and_visualize(breath_in, breath_out):
|
133 |
total_duration = breath_in + breath_out
|