Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import librosa
|
|
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
import time
|
7 |
-
import io
|
8 |
-
from PIL import Image
|
9 |
|
10 |
# Load the pre-trained model (optional for this logic, depending on use case)
|
11 |
model = tf.keras.models.load_model("model.h5")
|
@@ -100,35 +99,23 @@ def process_audio(audio_file, inhale_duration, exhale_duration):
|
|
100 |
countdown_message = f"Starting recording with total duration of {total_duration} seconds.\n"
|
101 |
countdown_message += f"Starting Inhale for {inhale_duration} seconds...\n"
|
102 |
|
103 |
-
# Balloon size animation (use Gradio's JS for animation)
|
104 |
-
balloon_animation = []
|
105 |
-
|
106 |
for t in range(inhale_duration, 0, -1):
|
107 |
time.sleep(1)
|
108 |
countdown_message += f"Inhale: {t}s remaining...\n"
|
109 |
-
|
110 |
-
|
111 |
countdown_message += f"Switching to Exhale for {exhale_duration} seconds...\n"
|
112 |
-
|
113 |
for t in range(exhale_duration, 0, -1):
|
114 |
time.sleep(1)
|
115 |
countdown_message += f"Exhale: {t}s remaining...\n"
|
116 |
-
|
117 |
-
|
118 |
countdown_message += "Recording Finished!"
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
return
|
124 |
|
125 |
-
# Create a balloon image to display
|
126 |
-
def create_balloon_image():
|
127 |
-
# Create a balloon using PIL or load a pre-existing image and resize it
|
128 |
-
balloon = Image.new('RGBA', (200, 200), (255, 255, 255, 0))
|
129 |
-
# Drawing a simple circle for the balloon
|
130 |
-
balloon = balloon.resize((200, 200)) # Initial size
|
131 |
-
return balloon
|
132 |
|
133 |
# Define Gradio interface
|
134 |
with gr.Blocks() as demo:
|
@@ -144,14 +131,13 @@ with gr.Blocks() as demo:
|
|
144 |
result_output = gr.Textbox(label="Prediction Results (Table)")
|
145 |
waveform_output = gr.Image(label="Waveform with Highlighted Segments")
|
146 |
countdown_output = gr.Textbox(label="Countdown Timer")
|
147 |
-
balloon_output = gr.Image(label="Balloon Animation")
|
148 |
|
149 |
submit_button = gr.Button("Start Record")
|
150 |
|
151 |
submit_button.click(
|
152 |
fn=process_audio,
|
153 |
inputs=[audio_input, inhale_duration, exhale_duration],
|
154 |
-
outputs=[result_output, waveform_output, countdown_output
|
155 |
)
|
156 |
|
157 |
# Run the Gradio app
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import librosa
|
4 |
+
import librosa.display
|
5 |
import numpy as np
|
6 |
import matplotlib.pyplot as plt
|
7 |
import time
|
|
|
|
|
8 |
|
9 |
# Load the pre-trained model (optional for this logic, depending on use case)
|
10 |
model = tf.keras.models.load_model("model.h5")
|
|
|
99 |
countdown_message = f"Starting recording with total duration of {total_duration} seconds.\n"
|
100 |
countdown_message += f"Starting Inhale for {inhale_duration} seconds...\n"
|
101 |
|
|
|
|
|
|
|
102 |
for t in range(inhale_duration, 0, -1):
|
103 |
time.sleep(1)
|
104 |
countdown_message += f"Inhale: {t}s remaining...\n"
|
105 |
+
|
|
|
106 |
countdown_message += f"Switching to Exhale for {exhale_duration} seconds...\n"
|
107 |
+
|
108 |
for t in range(exhale_duration, 0, -1):
|
109 |
time.sleep(1)
|
110 |
countdown_message += f"Exhale: {t}s remaining...\n"
|
111 |
+
|
|
|
112 |
countdown_message += "Recording Finished!"
|
113 |
|
114 |
+
return result_table, "waveform_highlighted.png", countdown_message
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
return f"Error: {str(e)}", None, None
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# Define Gradio interface
|
121 |
with gr.Blocks() as demo:
|
|
|
131 |
result_output = gr.Textbox(label="Prediction Results (Table)")
|
132 |
waveform_output = gr.Image(label="Waveform with Highlighted Segments")
|
133 |
countdown_output = gr.Textbox(label="Countdown Timer")
|
|
|
134 |
|
135 |
submit_button = gr.Button("Start Record")
|
136 |
|
137 |
submit_button.click(
|
138 |
fn=process_audio,
|
139 |
inputs=[audio_input, inhale_duration, exhale_duration],
|
140 |
+
outputs=[result_output, waveform_output, countdown_output]
|
141 |
)
|
142 |
|
143 |
# Run the Gradio app
|