Dimsumcat commited on
Commit
dbff8ac
·
verified ·
1 Parent(s): 7d77ba7

update app.py with circle

Browse files
Files changed (1) hide show
  1. app.py +101 -29
app.py CHANGED
@@ -4,43 +4,43 @@ import librosa
4
  import librosa.display
5
  import numpy as np
6
  import matplotlib.pyplot as plt
 
 
 
7
 
8
  # Load the pre-trained model
9
  model = tf.keras.models.load_model("model.h5")
10
 
11
  # Function to process audio, predict, and generate results
12
- def process_audio(audio_file):
13
  try:
14
  # Load the audio file
15
  y, sr = librosa.load(audio_file, sr=16000)
16
-
17
  # Detect segments (e.g., using energy or silence)
18
  intervals = librosa.effects.split(y, top_db=20)
19
-
20
  results = []
21
-
22
  plt.figure(figsize=(10, 4))
23
  librosa.display.waveshow(y, sr=sr, alpha=0.5)
24
-
25
  # Process each segment
26
  for i, (start, end) in enumerate(intervals):
27
  segment = y[start:end]
28
  duration = (end - start) / sr
29
-
30
  # Compute the amplitude (mean absolute value)
31
  amplitude = np.mean(np.abs(segment))
32
-
33
  # Extract MFCC features
34
  mfcc = librosa.feature.mfcc(y=segment, sr=sr, n_mfcc=13)
35
  mfcc = np.mean(mfcc, axis=1).reshape(1, -1)
36
-
37
- # Predict inhale or exhale (override with amplitude logic)
38
  prediction = model.predict(mfcc)
39
- label_from_model = "Inhale" if np.argmax(prediction) == 0 else "Exhale"
40
-
41
- # Assign label based on amplitude
42
- label = "Inhale" if amplitude > 0.05 else "Exhale" # Threshold for exhale
43
-
44
  # Append results
45
  results.append({
46
  "Segment": i + 1,
@@ -48,41 +48,113 @@ def process_audio(audio_file):
48
  "Duration (s)": round(duration, 2),
49
  "Amplitude": round(amplitude, 4)
50
  })
51
-
52
- # Highlight segment on waveform with swapped colors
53
  plt.axvspan(start / sr, end / sr, color='red' if label == "Inhale" else 'blue', alpha=0.3)
54
-
55
  # Save the waveform with highlighted segments
56
  plt.title("Audio Waveform with Inhale/Exhale Segments")
57
  plt.xlabel("Time (s)")
58
  plt.ylabel("Amplitude")
59
  plt.savefig("waveform_highlighted.png")
60
  plt.close()
61
-
62
  # Format results as a table
63
  result_table = "Segment\tType\tDuration (s)\tAmplitude\n" + "\n".join(
64
  f"{row['Segment']}\t{row['Type']}\t{row['Duration (s)']}\t{row['Amplitude']}" for row in results
65
  )
66
-
67
  return result_table, "waveform_highlighted.png"
68
-
69
  except Exception as e:
70
  return f"Error: {str(e)}", None
71
 
72
- # Define Gradio interface
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  with gr.Blocks() as demo:
74
  gr.Markdown("### Breathe Training Application")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  with gr.Row():
76
- audio_input = gr.Audio(type="filepath", label="Upload or Record Audio")
 
77
  result_output = gr.Textbox(label="Prediction Results (Table)")
78
  waveform_output = gr.Image(label="Waveform with Highlighted Segments")
79
- submit_button = gr.Button("Analyze")
80
-
81
- submit_button.click(
82
- fn=process_audio,
83
- inputs=[audio_input],
84
- outputs=[result_output, waveform_output]
85
  )
86
 
87
  # Run the Gradio app
88
- demo.launch()
 
4
  import librosa.display
5
  import numpy as np
6
  import matplotlib.pyplot as plt
7
+ import sounddevice as sd
8
+ import soundfile as sf
9
+ import threading
10
 
11
  # Load the pre-trained model
12
  model = tf.keras.models.load_model("model.h5")
13
 
14
  # Function to process audio, predict, and generate results
15
+ def process_audio(audio_file, breath_in_time, breath_out_time):
16
  try:
17
  # Load the audio file
18
  y, sr = librosa.load(audio_file, sr=16000)
19
+
20
  # Detect segments (e.g., using energy or silence)
21
  intervals = librosa.effects.split(y, top_db=20)
22
+
23
  results = []
24
+
25
  plt.figure(figsize=(10, 4))
26
  librosa.display.waveshow(y, sr=sr, alpha=0.5)
27
+
28
  # Process each segment
29
  for i, (start, end) in enumerate(intervals):
30
  segment = y[start:end]
31
  duration = (end - start) / sr
32
+
33
  # Compute the amplitude (mean absolute value)
34
  amplitude = np.mean(np.abs(segment))
35
+
36
  # Extract MFCC features
37
  mfcc = librosa.feature.mfcc(y=segment, sr=sr, n_mfcc=13)
38
  mfcc = np.mean(mfcc, axis=1).reshape(1, -1)
39
+
40
+ # Predict inhale or exhale
41
  prediction = model.predict(mfcc)
42
+ label = "Inhale" if np.argmax(prediction) == 0 else "Exhale"
43
+
 
 
 
44
  # Append results
45
  results.append({
46
  "Segment": i + 1,
 
48
  "Duration (s)": round(duration, 2),
49
  "Amplitude": round(amplitude, 4)
50
  })
51
+
52
+ # Highlight segment on waveform
53
  plt.axvspan(start / sr, end / sr, color='red' if label == "Inhale" else 'blue', alpha=0.3)
54
+
55
  # Save the waveform with highlighted segments
56
  plt.title("Audio Waveform with Inhale/Exhale Segments")
57
  plt.xlabel("Time (s)")
58
  plt.ylabel("Amplitude")
59
  plt.savefig("waveform_highlighted.png")
60
  plt.close()
61
+
62
  # Format results as a table
63
  result_table = "Segment\tType\tDuration (s)\tAmplitude\n" + "\n".join(
64
  f"{row['Segment']}\t{row['Type']}\t{row['Duration (s)']}\t{row['Amplitude']}" for row in results
65
  )
66
+
67
  return result_table, "waveform_highlighted.png"
68
+
69
  except Exception as e:
70
  return f"Error: {str(e)}", None
71
 
72
+ # Function to record audio for a specified duration
73
+ def record_audio(duration):
74
+ try:
75
+ audio_file = "recorded_audio.wav"
76
+ print(f"Recording for {duration} seconds...")
77
+ recording = sd.rec(int(duration * 16000), samplerate=16000, channels=1, dtype='float32')
78
+ sd.wait()
79
+ sf.write(audio_file, recording, 16000)
80
+ print("Recording complete!")
81
+ return audio_file
82
+ except Exception as e:
83
+ return f"Error: {str(e)}"
84
+
85
+ # Gradio Interface
86
  with gr.Blocks() as demo:
87
  gr.Markdown("### Breathe Training Application")
88
+
89
+ # Breath cycle configuration
90
+ with gr.Row():
91
+ breath_in_time = gr.Number(label="Breathe In Time (seconds)", value=3, interactive=True)
92
+ breath_out_time = gr.Number(label="Breathe Out Time (seconds)", value=3, interactive=True)
93
+
94
+ # Circle Animation using Custom HTML and CSS
95
+ gr.HTML("""
96
+ <div style="text-align: center;">
97
+ <div id="circle" style="
98
+ width: 100px;
99
+ height: 100px;
100
+ border-radius: 50%;
101
+ background-color: lightblue;
102
+ margin: 20px auto;
103
+ animation: breathe 6s infinite;">
104
+ </div>
105
+ <p id="instruction" style="font-size: 20px; font-weight: bold;">Breathe In...</p>
106
+ </div>
107
+ <style>
108
+ @keyframes breathe {
109
+ 0% { transform: scale(1); }
110
+ 50% { transform: scale(1.5); }
111
+ 100% { transform: scale(1); }
112
+ }
113
+ </style>
114
+ <script>
115
+ const instruction = document.getElementById("instruction");
116
+ let breatheInTime = 3; // Default value for inhale
117
+ let breatheOutTime = 3; // Default value for exhale
118
+
119
+ function updateBreathingCycle(inTime, outTime) {
120
+ breatheInTime = inTime;
121
+ breatheOutTime = outTime;
122
+ const totalTime = inTime + outTime;
123
+ const keyframes = `
124
+ @keyframes breathe {
125
+ 0% { transform: scale(1); }
126
+ ${Math.round((inTime / totalTime) * 100)}% { transform: scale(1.5); }
127
+ 100% { transform: scale(1); }
128
+ }
129
+ `;
130
+ const styleSheet = document.styleSheets[0];
131
+ styleSheet.insertRule(keyframes, styleSheet.cssRules.length);
132
+
133
+ let isInhaling = true;
134
+ setInterval(() => {
135
+ instruction.textContent = isInhaling ? "Breathe In..." : "Breathe Out...";
136
+ isInhaling = !isInhaling;
137
+ }, inTime * 1000);
138
+ }
139
+
140
+ // Default breathing cycle
141
+ updateBreathingCycle(breatheInTime, breatheOutTime);
142
+ </script>
143
+ """)
144
+
145
+ # File upload and analysis
146
  with gr.Row():
147
+ record_button = gr.Button("Start Recording")
148
+ audio_input = gr.Audio(type="filepath", label="Upload Audio (optional)")
149
  result_output = gr.Textbox(label="Prediction Results (Table)")
150
  waveform_output = gr.Image(label="Waveform with Highlighted Segments")
151
+
152
+ # Handle recording and analysis
153
+ record_button.click(
154
+ fn=lambda breath_in, breath_out: process_audio(record_audio(breath_in + breath_out), breath_in, breath_out),
155
+ inputs=[breath_in_time, breath_out_time],
156
+ outputs=[result_output, waveform_output],
157
  )
158
 
159
  # Run the Gradio app
160
+ demo.launch()