Spaces:
Running
Running
File size: 4,890 Bytes
90b01aa e505b2c 90b01aa e505b2c 90b01aa 5ac1ca9 90b01aa f1e0372 90b01aa 8d06a24 90b01aa ecfeede 90b01aa 8d06a24 90b01aa ecfeede 90b01aa ecfeede 90b01aa 8d06a24 90b01aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
"""
Streamlit dashboard for the Dippy Speech Subnet Leaderboard
"""
import requests
import streamlit as st
import pandas as pd
st.set_page_config(layout="wide")
import pandas as pd
import numpy as np
REMOTE_LEADERBOARD_URL = "https://sn58-validation.dippy-bittensor-subnet.com/minerboard"
def iswin(score_i, score_j, block_i, block_j):
MAX_PENALTY = 0.03 # Adjust this value as needed
penalty = MAX_PENALTY
score_i = (1 - penalty) * score_i if block_i > block_j else score_i
score_j = (1 - penalty) * score_j if block_j > block_i else score_j
return score_i > score_j
def calculate_win_rate(df):
n = len(df)
win_counts = np.zeros(n)
for i in range(n):
for j in range(n):
if i != j:
if iswin(df.loc[i, 'total_score'], df.loc[j, 'total_score'],
df.loc[i, 'block'], df.loc[j, 'block']) and df.loc[i, 'real_status'] == 'COMPLETED':
win_counts[i] += 1
return win_counts / (n - 1) # Divide by (n-1) as each row isn't compared with itself
def leaderboard_dashboard():
# load the logo from image.txt file as base64
with open("image.txt", "r") as f:
image = f.read()
st.markdown(
f"""
<div style="text-align: center;">
<img src="data:image/png;base64,{image}" alt="Dippy Roleplay Logo" width="600" height="300" style="margin-bottom: 2rem;">
<h1 style="margin-top: 0;">SN58-Dippy-Speech Leaderboard</h1>
<div style="font-size: 18px;">This is the leaderboard for the Dippy voice validation API hosted by SN58.</div>
</div>
""",
unsafe_allow_html=True,
)
# Add emojis based on the status
status_emojis = {
'COMPLETED': '✅COMPLETED',
'FAILED': '❌FAILED',
'QUEUED': '🕒QUEUED',
'RUNNING': '🏃RUNNING'
}
# Get the minerboard data from the API
response = requests.get(REMOTE_LEADERBOARD_URL)
if response.status_code != 200:
st.error("Failed to fetch minerboard data.")
return
# Parse the response JSON data
minerboard_data = response.json()
if len(minerboard_data) < 1:
st.markdown(
f"""
<div style="text-align: center;">
<h2 style="margin-top: 0;">In progress!</h2>
</div>
""",
unsafe_allow_html=True,
)
return
# Convert the data to a DataFrame
minerboard = pd.DataFrame(minerboard_data)
minerboard['status'] = minerboard['status'].map(lambda status: status_emojis.get(status, status))
# Sort the minerboard_winrate by the total_score column
minerboard = minerboard.sort_values(by='total_score', ascending=False, ignore_index=True)
# front_order = ['repo_name','uid', 'hotkey', 'total_score', 'status', 'hash']
front_order = ['uid', 'repo_name', 'repo_namespace', 'hotkey', 'total_score', 'status', 'hash']
# move status column to the front
column_order = front_order + [column for column in minerboard.columns if column not in front_order]
minerboard = minerboard[column_order]
minerboard_winrate = pd.DataFrame(minerboard_data)
minerboard_winrate['real_status'] = minerboard_winrate['status']
minerboard_winrate.loc[minerboard_winrate['real_status'] == 'FAILED', 'total_score'] = 0
minerboard_winrate['status'] = minerboard_winrate['status'].map(lambda status: status_emojis.get(status, status))
minerboard_winrate['win_rate'] = calculate_win_rate(minerboard_winrate)
minerboard_winrate = minerboard_winrate.sort_values(by='win_rate', ascending=False, ignore_index=True)
# column_order = ['uid', 'win_rate', 'hotkey', 'hash', 'total_score', 'block', 'status']
column_order = ['uid', 'repo_name', 'repo_namespace', 'win_rate', 'hotkey', 'hash', 'total_score', 'block', 'status']
# Create a new DataFrame with only the specified columns
minerboard_winrate = minerboard_winrate[column_order]
st.header("Leaderboard by Win Rate ")
st.dataframe(minerboard_winrate, hide_index=True)
with st.expander("See detailed calculation method"):
st.write("The win rate is calculated by comparing each miner against every other miner. Note that this board is only an approximation as queued miners have a score of 0, validators are omitted, etc.")
st.code("""
Example of calculating a win:
def iswin(score_i, score_j, block_i, block_j):
penalty = 0.03
score_i = (1 - penalty) * score_i if block_i > block_j else score_i
score_j = (1 - penalty) * score_j if block_j > block_i else score_j
return score_i > score_j
""")
st.markdown("---")
st.header("Minerboard")
st.dataframe(minerboard, hide_index=True)
st.markdown("---")
if __name__ == '__main__':
leaderboard_dashboard() |