File size: 4,890 Bytes
90b01aa
 
 
 
e505b2c
90b01aa
e505b2c
90b01aa
 
 
 
5ac1ca9
90b01aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e0372
90b01aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d06a24
90b01aa
 
ecfeede
 
90b01aa
 
 
 
 
8d06a24
 
90b01aa
 
 
 
 
 
 
 
 
ecfeede
 
 
 
 
90b01aa
 
ecfeede
 
90b01aa
 
 
 
8d06a24
 
 
 
90b01aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
Streamlit dashboard for the Dippy Speech Subnet Leaderboard
"""
import requests
import streamlit as st
import pandas as pd

st.set_page_config(layout="wide")

import pandas as pd
import numpy as np
REMOTE_LEADERBOARD_URL = "https://sn58-validation.dippy-bittensor-subnet.com/minerboard"
def iswin(score_i, score_j, block_i, block_j):
    MAX_PENALTY = 0.03  # Adjust this value as needed
    penalty = MAX_PENALTY
    score_i = (1 - penalty) * score_i if block_i > block_j else score_i
    score_j = (1 - penalty) * score_j if block_j > block_i else score_j
    return score_i > score_j

def calculate_win_rate(df):
    n = len(df)
    win_counts = np.zeros(n)
    
    for i in range(n):
        for j in range(n):
            if i != j:
                if iswin(df.loc[i, 'total_score'], df.loc[j, 'total_score'],
                         df.loc[i, 'block'], df.loc[j, 'block']) and df.loc[i, 'real_status'] == 'COMPLETED':
                    win_counts[i] += 1
    
    return win_counts / (n - 1)  # Divide by (n-1) as each row isn't compared with itself



def leaderboard_dashboard():
    # load the logo from image.txt file as base64
    with open("image.txt", "r") as f:
        image = f.read()

    st.markdown(
        f"""
        <div style="text-align: center;">
            <img src="data:image/png;base64,{image}" alt="Dippy Roleplay Logo" width="600" height="300" style="margin-bottom: 2rem;">
            <h1 style="margin-top: 0;">SN58-Dippy-Speech Leaderboard</h1>
            <div style="font-size: 18px;">This is the leaderboard for the Dippy voice validation API hosted by SN58.</div>
        </div>
        """,
        unsafe_allow_html=True,
    )
    
    
    # Add emojis based on the status
    status_emojis = {
        'COMPLETED': '✅COMPLETED',
        'FAILED': '❌FAILED',
        'QUEUED': '🕒QUEUED',
        'RUNNING': '🏃RUNNING'
    }

    
    # Get the minerboard data from the API
    response = requests.get(REMOTE_LEADERBOARD_URL)
    if response.status_code != 200:
        st.error("Failed to fetch minerboard data.")
        return

    # Parse the response JSON data
    minerboard_data = response.json()
    if len(minerboard_data) < 1:
        st.markdown(
        f"""
        <div style="text-align: center;">
            <h2 style="margin-top: 0;">In progress!</h2>
        </div>
        """,
        unsafe_allow_html=True,
    )
        return

    # Convert the data to a DataFrame
    minerboard = pd.DataFrame(minerboard_data)
    
    

    minerboard['status'] = minerboard['status'].map(lambda status: status_emojis.get(status, status))
    # Sort the minerboard_winrate by the total_score column
    minerboard = minerboard.sort_values(by='total_score', ascending=False, ignore_index=True)

    # front_order = ['repo_name','uid', 'hotkey', 'total_score', 'status', 'hash']
    front_order = ['uid', 'repo_name', 'repo_namespace', 'hotkey', 'total_score', 'status', 'hash']

    # move status column to the front
    column_order = front_order + [column for column in minerboard.columns if column not in front_order]

    minerboard = minerboard[column_order]
    

    minerboard_winrate = pd.DataFrame(minerboard_data)

    minerboard_winrate['real_status'] = minerboard_winrate['status']
    
    minerboard_winrate.loc[minerboard_winrate['real_status'] == 'FAILED', 'total_score'] = 0
    

    minerboard_winrate['status'] = minerboard_winrate['status'].map(lambda status: status_emojis.get(status, status))

    

    minerboard_winrate['win_rate'] = calculate_win_rate(minerboard_winrate)

    minerboard_winrate = minerboard_winrate.sort_values(by='win_rate', ascending=False, ignore_index=True)
            
    # column_order = ['uid', 'win_rate', 'hotkey', 'hash', 'total_score', 'block', 'status']

    column_order = ['uid', 'repo_name', 'repo_namespace', 'win_rate', 'hotkey', 'hash', 'total_score', 'block', 'status']


    # Create a new DataFrame with only the specified columns
    minerboard_winrate = minerboard_winrate[column_order]
    st.header("Leaderboard by Win Rate ")
    st.dataframe(minerboard_winrate, hide_index=True)
    with st.expander("See detailed calculation method"):
        st.write("The win rate is calculated by comparing each miner against every other miner. Note that this board is only an approximation as queued miners have a score of 0, validators are omitted, etc.")
        st.code("""
    Example of calculating a win:
    def iswin(score_i, score_j, block_i, block_j):
        penalty = 0.03
        score_i = (1 - penalty) * score_i if block_i > block_j else score_i
        score_j = (1 - penalty) * score_j if block_j > block_i else score_j
        return score_i > score_j
    """)
    st.markdown("---")
    st.header("Minerboard")
    st.dataframe(minerboard, hide_index=True)
    st.markdown("---")


if __name__ == '__main__':
    leaderboard_dashboard()