Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModel, AutoTokenizer | |
from PIL import Image | |
import os | |
import base64 | |
import uuid | |
import time | |
import shutil | |
from pathlib import Path | |
# Load tokenizer and model on CPU | |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True) | |
model = model.eval() # Use CPU | |
# Define folders for uploads and results | |
UPLOAD_FOLDER = "./uploads" | |
RESULTS_FOLDER = "./results" | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
if not os.path.exists(folder): | |
os.makedirs(folder) | |
# Function to run the GOT model | |
def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""): | |
unique_id = str(uuid.uuid4()) | |
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") | |
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") | |
image.save(image_path) | |
try: | |
if got_mode == "plain texts OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='ocr') | |
return res, None | |
elif got_mode == "format texts OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif got_mode == "plain multi-crop OCR": | |
res = model.chat_crop(tokenizer, image_path, ocr_type='ocr') | |
return res, None | |
elif got_mode == "format multi-crop OCR": | |
res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif got_mode == "plain fine-grained OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color) | |
return res, None | |
elif got_mode == "format fine-grained OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path) | |
res_markdown = res | |
if "format" in got_mode and os.path.exists(result_path): | |
with open(result_path, 'r') as f: | |
html_content = f.read() | |
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') | |
iframe_src = f"data:text/html;base64,{encoded_html}" | |
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>' | |
return res_markdown, iframe | |
else: | |
return res_markdown, None | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
finally: | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
# Function to clean up old files | |
def cleanup_old_files(): | |
current_time = time.time() | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
for file_path in Path(folder).glob('*'): | |
if current_time - file_path.stat().st_mtime > 3600: # 1 hour | |
file_path.unlink() | |
# Streamlit App | |
st.set_page_config(page_title="GOT-OCR-2.0 Demo", layout="wide") | |
st.markdown(""" | |
<h2> <span style="color: #ff6600">General OCR Theory</span>: Towards OCR-2.0 via a Unified End-to-end Model</h2> | |
<a href="https://huggingface.co/ucaslcl/GOT-OCR2_0">[π Hugging Face]</a> | |
<a href="https://arxiv.org/abs/2409.01704">[π Paper]</a> | |
<a href="https://github.com/Ucas-HaoranWei/GOT-OCR2.0/">[π GitHub]</a> | |
""", unsafe_allow_html=True) | |
st.markdown(""" | |
"π₯π₯π₯This is the official online demo of the GOT-OCR-2.0 model!!!" | |
### Demo Guidelines | |
- You need to upload your image below and choose one mode of GOT, then click "Submit" to run the GOT model. More characters will result in longer wait times. | |
- **plain texts OCR & format texts OCR**: The two modes are for the image-level OCR. | |
- **plain multi-crop OCR & format multi-crop OCR**: For images with more complex content, you can achieve higher-quality results with these modes. | |
- **plain fine-grained OCR & format fine-grained OCR**: In these modes, you can specify fine-grained regions on the input image for more flexible OCR. Fine-grained regions can be coordinates of the box, red color, blue color, or green color. | |
""") | |
uploaded_image = st.file_uploader("Upload your image", type=["png", "jpg", "jpeg"]) | |
if uploaded_image: | |
image = Image.open(uploaded_image) | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
got_mode = st.selectbox("Choose one mode of GOT", [ | |
"plain texts OCR", | |
"format texts OCR", | |
"plain multi-crop OCR", | |
"format multi-crop OCR", | |
"plain fine-grained OCR", | |
"format fine-grained OCR", | |
]) | |
fine_grained_mode = None | |
ocr_color = "" | |
ocr_box = "" | |
if "fine-grained" in got_mode: | |
fine_grained_mode = st.selectbox("Fine-grained type", ["box", "color"]) | |
if fine_grained_mode == "box": | |
ocr_box = st.text_input("Input box: [x1,y1,x2,y2]", value="[0,0,100,100]") | |
elif fine_grained_mode == "color": | |
ocr_color = st.selectbox("Color list", ["red", "green", "blue"]) | |
if st.button("Submit"): | |
with st.spinner("Processing..."): | |
result_text, html_result = run_GOT(image, got_mode, fine_grained_mode, ocr_color, ocr_box) | |
st.text_area("GOT Output", result_text, height=200) | |
if html_result: | |
st.markdown(html_result, unsafe_allow_html=True) | |
# Cleanup old files | |
cleanup_old_files() | |