Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,23 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import re
|
4 |
-
from transformers import
|
5 |
|
6 |
st.set_page_config(page_title="OCR Application", page_icon="🖼️", layout="wide")
|
7 |
-
device = "cpu"
|
8 |
|
9 |
@st.cache_resource
|
10 |
def load_model():
|
11 |
-
# Load
|
12 |
-
|
13 |
-
model =
|
14 |
-
return
|
15 |
-
|
16 |
-
def extract_text(image,
|
17 |
-
# Preprocess the image and extract text
|
18 |
-
|
19 |
-
generated_ids = model.generate(
|
20 |
-
extracted_text =
|
21 |
return extracted_text
|
22 |
|
23 |
def highlight_matches(text, keywords):
|
@@ -27,10 +27,10 @@ def highlight_matches(text, keywords):
|
|
27 |
return highlighted_text
|
28 |
|
29 |
def main():
|
30 |
-
st.title("OCR Text Extractor using
|
31 |
|
32 |
-
# Load model and
|
33 |
-
|
34 |
|
35 |
# Upload Image
|
36 |
uploaded_file = st.file_uploader("Upload an image for OCR", type=["png", "jpg", "jpeg"])
|
@@ -39,9 +39,9 @@ def main():
|
|
39 |
image = Image.open(uploaded_file)
|
40 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
41 |
|
42 |
-
# Extract text from the image
|
43 |
with st.spinner("Extracting text from the image..."):
|
44 |
-
extracted_text = extract_text(image,
|
45 |
|
46 |
st.subheader("Extracted Text")
|
47 |
st.text_area("Text from Image", extracted_text, height=300)
|
@@ -57,3 +57,4 @@ def main():
|
|
57 |
|
58 |
if __name__ == "__main__":
|
59 |
main()
|
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
from PIL import Image
|
4 |
import re
|
5 |
+
from transformers import AutoModel, AutoTokenizer
|
6 |
|
7 |
st.set_page_config(page_title="OCR Application", page_icon="🖼️", layout="wide")
|
|
|
8 |
|
9 |
@st.cache_resource
|
10 |
def load_model():
|
11 |
+
# Load the tokenizer and model for processing images
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
13 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
14 |
+
return tokenizer, model
|
15 |
+
|
16 |
+
def extract_text(image, tokenizer, model):
|
17 |
+
# Preprocess the image and extract text using the model
|
18 |
+
inputs = tokenizer(images=image, return_tensors="pt") # Adjust based on how the model expects inputs
|
19 |
+
generated_ids = model.generate(**inputs)
|
20 |
+
extracted_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
21 |
return extracted_text
|
22 |
|
23 |
def highlight_matches(text, keywords):
|
|
|
27 |
return highlighted_text
|
28 |
|
29 |
def main():
|
30 |
+
st.title("OCR Text Extractor using Qwen Model")
|
31 |
|
32 |
+
# Load model and tokenizer
|
33 |
+
tokenizer, model = load_model()
|
34 |
|
35 |
# Upload Image
|
36 |
uploaded_file = st.file_uploader("Upload an image for OCR", type=["png", "jpg", "jpeg"])
|
|
|
39 |
image = Image.open(uploaded_file)
|
40 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
41 |
|
42 |
+
# Extract text from the image using the model
|
43 |
with st.spinner("Extracting text from the image..."):
|
44 |
+
extracted_text = extract_text(image, tokenizer, model)
|
45 |
|
46 |
st.subheader("Extracted Text")
|
47 |
st.text_area("Text from Image", extracted_text, height=300)
|
|
|
57 |
|
58 |
if __name__ == "__main__":
|
59 |
main()
|
60 |
+
|