Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .env +3 -0
- Data/SDG.pdf +0 -0
- README.md +2 -8
- app.py +165 -0
- requirements.txt +10 -0
.env
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
GROQ_API_KEY="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"
|
2 |
+
HUGGINGFACE_API_KEY=""
|
3 |
+
PINECONE_API_KEY="pcsk_4x6rrL_JWddywVmVcd16ijWofHRBRkV3epTLGyVcqQHZBzo5263AxXP7d46ruR1TYPwc5x"
|
Data/SDG.pdf
ADDED
Binary file (272 kB). View file
|
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.10.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: PDF_Insights_QA
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 5.10.0
|
|
|
|
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
import nest_asyncio
|
4 |
+
import pinecone
|
5 |
+
import time
|
6 |
+
from dotenv import find_dotenv, load_dotenv
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
9 |
+
from langchain_core.output_parsers import StrOutputParser
|
10 |
+
from langchain_core.prompts import PromptTemplate
|
11 |
+
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
|
12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
14 |
+
from langchain_pinecone import PineconeVectorStore
|
15 |
+
from pinecone import Pinecone, ServerlessSpec
|
16 |
+
import gradio as gr
|
17 |
+
from langchain import hub
|
18 |
+
|
19 |
+
# Allow nested async calls
|
20 |
+
nest_asyncio.apply()
|
21 |
+
|
22 |
+
# Load environment variables
|
23 |
+
_ = load_dotenv(find_dotenv())
|
24 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
25 |
+
os.environ["HUGGINGFACE_API_KEY"] = os.getenv("HUGGINGFACE_API_KEY")
|
26 |
+
os.environ["PINECONE_API_KEY"] = os.getenv("PINECONE_API_KEY")
|
27 |
+
|
28 |
+
# Initialize Pinecone
|
29 |
+
pc = Pinecone()
|
30 |
+
index_name = "intern"
|
31 |
+
|
32 |
+
existing_indexes = [index_info["name"] for index_info in pc.list_indexes()]
|
33 |
+
|
34 |
+
if index_name not in existing_indexes:
|
35 |
+
print(f"Creating new index: {index_name}")
|
36 |
+
pc.create_index(
|
37 |
+
name=index_name,
|
38 |
+
dimension=384,
|
39 |
+
metric="cosine",
|
40 |
+
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
|
41 |
+
)
|
42 |
+
while not pc.describe_index(index_name).status["ready"]:
|
43 |
+
time.sleep(1)
|
44 |
+
|
45 |
+
index = pc.Index(index_name)
|
46 |
+
|
47 |
+
# embeddings model
|
48 |
+
print("Initializing embedding model...")
|
49 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
50 |
+
|
51 |
+
# Load and split documents
|
52 |
+
print("Loading documents...")
|
53 |
+
loader = PyPDFDirectoryLoader("Data")
|
54 |
+
documents = loader.load()
|
55 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
56 |
+
docs = text_splitter.split_documents(documents)
|
57 |
+
|
58 |
+
def are_documents_indexed(index):
|
59 |
+
try:
|
60 |
+
# Create a simple test embedding
|
61 |
+
test_embedding = embedding_model.embed_query("test")
|
62 |
+
# Query the index
|
63 |
+
results = index.query(vector=test_embedding, top_k=1)
|
64 |
+
return len(results.matches) > 0
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error checking indexed documents: {e}")
|
67 |
+
return False
|
68 |
+
|
69 |
+
# Initialize vector store
|
70 |
+
print("Initializing vector store...")
|
71 |
+
vector_store = PineconeVectorStore(index=index, embedding=embedding_model)
|
72 |
+
|
73 |
+
# Add documents only if not already indexed
|
74 |
+
print("Checking if documents are already indexed...")
|
75 |
+
if not are_documents_indexed(index):
|
76 |
+
print("Adding documents to index...")
|
77 |
+
vector_store.add_documents(docs)
|
78 |
+
print("Documents added successfully!")
|
79 |
+
else:
|
80 |
+
print("Documents are already indexed.")
|
81 |
+
|
82 |
+
print("Setting up retriever and LLM...")
|
83 |
+
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
84 |
+
llm = ChatGroq(model="llama3-8b-8192", temperature=0.7, max_retries=4)
|
85 |
+
str_output_parser = StrOutputParser()
|
86 |
+
|
87 |
+
prompt = hub.pull("jclemens24/rag-prompt")
|
88 |
+
|
89 |
+
relevance_prompt_template = PromptTemplate.from_template(
|
90 |
+
"""
|
91 |
+
Given the following question and retrieved context, determine if the context is relevant to the question.
|
92 |
+
Provide a score from 1 to 5, where 1 is not at all relevant and 5 is highly relevant.
|
93 |
+
Return ONLY the numeric score, without any additional text or explanation.
|
94 |
+
|
95 |
+
Question: {question}
|
96 |
+
Retrieved Context: {retrieved_context}
|
97 |
+
|
98 |
+
Relevance Score:"""
|
99 |
+
)
|
100 |
+
|
101 |
+
def format_docs(docs):
|
102 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
103 |
+
|
104 |
+
def extract_score(llm_output):
|
105 |
+
try:
|
106 |
+
return float(llm_output.strip())
|
107 |
+
except ValueError:
|
108 |
+
return 0
|
109 |
+
|
110 |
+
def conditional_answer(x):
|
111 |
+
relevance_score = extract_score(x["relevance_score"])
|
112 |
+
return "I don't know." if relevance_score < 4 else x["answer"]
|
113 |
+
|
114 |
+
# RAG pipeline
|
115 |
+
rag_chain_from_docs = (
|
116 |
+
RunnablePassthrough.assign(context=lambda x: format_docs(x["context"]))
|
117 |
+
| RunnableParallel(
|
118 |
+
{
|
119 |
+
"relevance_score": (
|
120 |
+
RunnablePassthrough()
|
121 |
+
| (lambda x: relevance_prompt_template.format(question=x["question"], retrieved_context=x["context"]))
|
122 |
+
| llm
|
123 |
+
| str_output_parser
|
124 |
+
),
|
125 |
+
"answer": (
|
126 |
+
RunnablePassthrough()
|
127 |
+
| prompt
|
128 |
+
| llm
|
129 |
+
| str_output_parser
|
130 |
+
),
|
131 |
+
}
|
132 |
+
)
|
133 |
+
| RunnablePassthrough().assign(final_answer=conditional_answer)
|
134 |
+
)
|
135 |
+
|
136 |
+
rag_chain_with_source = RunnableParallel(
|
137 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
138 |
+
).assign(answer=rag_chain_from_docs)
|
139 |
+
|
140 |
+
async def process_question(question):
|
141 |
+
try:
|
142 |
+
result = await rag_chain_with_source.ainvoke(question)
|
143 |
+
final_answer = result["answer"]["final_answer"]
|
144 |
+
sources = [doc.metadata.get("source") for doc in result["context"]]
|
145 |
+
source_list = ", ".join(sources)
|
146 |
+
return final_answer, source_list
|
147 |
+
except Exception as e:
|
148 |
+
return f"Error: {str(e)}", "Error retrieving sources"
|
149 |
+
|
150 |
+
# Gradio
|
151 |
+
print("Gradio interface...")
|
152 |
+
demo = gr.Interface(
|
153 |
+
fn=process_question,
|
154 |
+
inputs=gr.Textbox(label="Enter your question", value=""),
|
155 |
+
outputs=[
|
156 |
+
gr.Textbox(label="Answer"),
|
157 |
+
gr.Textbox(label="Sources"),
|
158 |
+
],
|
159 |
+
title="RAG Question Answering",
|
160 |
+
description="Enter a question and get an answer from the PDFs.",
|
161 |
+
)
|
162 |
+
|
163 |
+
if __name__ == "__main__":
|
164 |
+
print("Launching the application...")
|
165 |
+
demo.queue().launch(share=True,debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
langchain
|
3 |
+
langchain-text-splitters
|
4 |
+
langchain-huggingface
|
5 |
+
langchain-groq
|
6 |
+
python-dotenv
|
7 |
+
langchain_community
|
8 |
+
pypdf
|
9 |
+
gradio
|
10 |
+
langchain-pinecone
|