Spaces:
Sleeping
Sleeping
Update util.py
Browse files
util.py
CHANGED
@@ -4,11 +4,11 @@ from langchain_community.embeddings import HuggingFaceHubEmbeddings
|
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
from langchain.chains import RetrievalQA
|
6 |
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
7 |
-
|
8 |
import git
|
9 |
|
|
|
10 |
from chromadb.utils import embedding_functions
|
11 |
-
|
12 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=os.environ['GOOGLE_API_KEY'], task_type="retrieval_query")
|
13 |
|
14 |
model = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key=os.environ['GOOGLE_API_KEY'],temperature=0.2,convert_system_message_to_human=True)
|
@@ -18,7 +18,7 @@ def get_folder_paths(directory = "githubCode"):
|
|
18 |
for root, dirs, files in os.walk(directory):
|
19 |
if '.git' in dirs:
|
20 |
# Skip the directory if a .git folder is found
|
21 |
-
dirs.remove('.git')
|
22 |
for dir_name in dirs:
|
23 |
folder_paths.append(os.path.join(root, dir_name))
|
24 |
return folder_paths
|
@@ -50,17 +50,19 @@ texts = text_splitter.split_text(context)
|
|
50 |
|
51 |
vector_index = Chroma.from_texts(texts, embeddings).as_retriever(search_kwargs={"k":5})
|
52 |
|
53 |
-
shutil
|
|
|
|
|
54 |
qa_chain = RetrievalQA.from_chain_type(
|
55 |
model,
|
56 |
retriever=vector_index,
|
57 |
return_source_documents=True
|
58 |
-
|
59 |
)
|
60 |
|
61 |
# Function to generate assistant's response using ask function
|
62 |
def generate_assistant_response(question):
|
63 |
answer = qa_chain({"query": question})
|
|
|
64 |
return answer['result']
|
65 |
|
66 |
# print(generate_assistant_response("Tell me about the instructor_embeddings function."))
|
|
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
from langchain.chains import RetrievalQA
|
6 |
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
7 |
+
|
8 |
import git
|
9 |
|
10 |
+
# embeddings = HuggingFaceHubEmbeddings(model="thuan9889/llama_embedding_model_v1")
|
11 |
from chromadb.utils import embedding_functions
|
|
|
12 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=os.environ['GOOGLE_API_KEY'], task_type="retrieval_query")
|
13 |
|
14 |
model = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key=os.environ['GOOGLE_API_KEY'],temperature=0.2,convert_system_message_to_human=True)
|
|
|
18 |
for root, dirs, files in os.walk(directory):
|
19 |
if '.git' in dirs:
|
20 |
# Skip the directory if a .git folder is found
|
21 |
+
dirs.remove('.git')
|
22 |
for dir_name in dirs:
|
23 |
folder_paths.append(os.path.join(root, dir_name))
|
24 |
return folder_paths
|
|
|
50 |
|
51 |
vector_index = Chroma.from_texts(texts, embeddings).as_retriever(search_kwargs={"k":5})
|
52 |
|
53 |
+
# import shutil
|
54 |
+
# shutil.rmtree('githubCode')
|
55 |
+
# print("Directory removed!!")
|
56 |
qa_chain = RetrievalQA.from_chain_type(
|
57 |
model,
|
58 |
retriever=vector_index,
|
59 |
return_source_documents=True
|
|
|
60 |
)
|
61 |
|
62 |
# Function to generate assistant's response using ask function
|
63 |
def generate_assistant_response(question):
|
64 |
answer = qa_chain({"query": question})
|
65 |
+
print(answer)
|
66 |
return answer['result']
|
67 |
|
68 |
# print(generate_assistant_response("Tell me about the instructor_embeddings function."))
|