File size: 3,366 Bytes
f2169e5
e988eb0
 
 
25a7813
b5b9af8
e988eb0
 
b5b9af8
 
25a7813
 
b5b9af8
25a7813
 
b5b9af8
25a7813
b5b9af8
95b2ec1
 
e988eb0
 
25a7813
 
 
 
 
 
 
 
 
 
 
e988eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b2ec1
25a7813
e988eb0
b5b9af8
25a7813
95b2ec1
e988eb0
 
4798805
e988eb0
 
 
25a7813
 
 
 
 
e988eb0
25a7813
e988eb0
 
 
 
25a7813
e988eb0
 
25a7813
e988eb0
25a7813
 
e988eb0
 
 
 
25a7813
e988eb0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import time
from datetime import datetime
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# -- SETUP --
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"

@st.cache_resource
def load_model():
    model_id = "google/flan-t5-base"
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
    return tokenizer, model

tokenizer, model = load_model()

if "history" not in st.session_state:
    st.session_state.history = []
    st.session_state.summary = ""

# -- TEXT GENERATION FUNCTION --
def generate_text(prompt, max_new_tokens=150):
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
    outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
    return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()

# -- HIGH-RISK FILTER --
TRIGGER_PHRASES = ["kill myself", "end it all", "suicide", "not worth living", "can't go on"]
def is_high_risk(text):
    return any(phrase in text.lower() for phrase in TRIGGER_PHRASES)

# -- STYLING --
st.markdown("""
    <style>
    body {
        background-color: #111827;
        color: #f3f4f6;
    }
    .stTextInput > div > div > input {
        color: #f3f4f6;
    }
    </style>
""", unsafe_allow_html=True)

# -- HEADER --
st.title("🧠 TARS.help")
st.markdown("### A minimal AI that listens, reflects, and replies.")
st.markdown(f"πŸ—“οΈ {datetime.now().strftime('%B %d, %Y')} | {len(st.session_state.history)//2} exchanges")

# -- USER INPUT --
user_input = st.text_input("How are you feeling today?", placeholder="Start typing...")

# -- MAIN CHAT LOGIC --
if user_input:
    context = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history[-4:]])
    with st.spinner("TARS is reflecting..."):
        time.sleep(1.2)
        if is_high_risk(user_input):
            response = "I'm really sorry you're feeling this way. You're not alone β€” please talk to someone you trust or a mental health professional. πŸ’™"
        else:
            prompt = f"Respond with empathy:\n{context}\nUser: {user_input}"
            response = generate_text(prompt, max_new_tokens=100)
    timestamp = datetime.now().strftime("%H:%M")
    st.session_state.history.append(("🧍 You", user_input, timestamp))
    st.session_state.history.append(("πŸ€– TARS", response, timestamp))

# -- DISPLAY CHAT --
st.markdown("## πŸ—¨οΈ Session")
for speaker, msg, time in st.session_state.history:
    st.markdown(f"**{speaker} [{time}]:** {msg}")

# -- SUMMARY GENERATION --
if st.button("🧾 Generate Session Summary"):
    convo = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history])
    summary_prompt = f"Summarize this conversation in 2-3 thoughtful sentences:\n{convo}"
    try:
        summary = generate_text(summary_prompt, max_new_tokens=150)
        st.session_state.summary = summary
    except Exception as e:
        st.error("❌ Summary generation failed.")
        st.exception(e)

# -- DISPLAY SUMMARY --
if st.session_state.summary:
    st.markdown("### 🧠 Session Note")
    st.markdown(st.session_state.summary)
    st.download_button("πŸ“₯ Download Summary", st.session_state.summary, file_name="tars_session.txt")

# -- FOOTER --
st.markdown("---")
st.caption("TARS is not a therapist but a quiet assistant that reflects with you.")