TARS.help / app.py
Divymakesml's picture
Update app.py
4e80759 verified
raw
history blame
3.05 kB
import streamlit as st
from datetime import datetime
import time
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import os
# -- SETUP --
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
@st.cache_resource
def load_model():
model_id = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
return pipeline("text-generation", model=model, tokenizer=tokenizer)
generator = load_model()
if "history" not in st.session_state:
st.session_state.history = []
st.session_state.summary = ""
TRIGGER_PHRASES = ["kill myself", "end it all", "suicide", "not worth living", "can't go on"]
def is_high_risk(text):
return any(phrase in text.lower() for phrase in TRIGGER_PHRASES)
def get_response(prompt, max_new_tokens=150, temperature=0.7):
output = generator(prompt, max_new_tokens=max_new_tokens, temperature=temperature)[0]["generated_text"]
return output.split("AI:")[-1].strip() if "AI:" in output else output.strip()
st.title("🧠 TARS.help")
st.markdown("### A quiet AI that reflects and replies.")
st.markdown(f"πŸ—“οΈ {datetime.now().strftime('%B %d, %Y')} | {len(st.session_state.history)//2} exchanges")
user_input = st.text_input("How are you feeling today?", placeholder="Start typing...")
if user_input:
context = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history[-4:]])
with st.spinner("TARS is reflecting..."):
time.sleep(1)
if is_high_risk(user_input):
response = "I'm really sorry you're feeling this way. You're not alone β€” please talk to someone you trust or a mental health professional. πŸ’™"
else:
prompt = f"You are a calm, empathetic AI assistant.\n{context}\nUser: {user_input}\nAI:"
response = get_response(prompt)
timestamp = datetime.now().strftime("%H:%M")
st.session_state.history.append(("🧍 You", user_input, timestamp))
st.session_state.history.append(("πŸ€– TARS", response, timestamp))
st.markdown("## πŸ—¨οΈ Session")
for speaker, msg, time in st.session_state.history:
st.markdown(f"**{speaker} [{time}]:** {msg}")
if st.button("🧾 Generate Session Summary"):
convo = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history])
prompt = f"Summarize the emotional tone and themes in this conversation:\n{convo}\nSummary:"
try:
summary = get_response(prompt, max_new_tokens=200, temperature=0.5)
st.session_state.summary = summary
except Exception as e:
st.error("Summary generation failed.")
st.exception(e)
if st.session_state.summary:
st.markdown("### 🧠 Session Note")
st.markdown(st.session_state.summary)
st.download_button("πŸ“₯ Download Summary", st.session_state.summary, file_name="tars_session.txt")
st.markdown("---")
st.caption("TARS is not a therapist. If you're in crisis, please seek help from a professional.")