Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,41 +2,36 @@ import os
|
|
2 |
import time
|
3 |
from datetime import datetime
|
4 |
import streamlit as st
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
-
import torch
|
7 |
|
8 |
# -- SETUP --
|
9 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
10 |
|
11 |
@st.cache_resource
|
12 |
-
def
|
13 |
-
model_id = "tiiuae/falcon-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
if "history" not in st.session_state:
|
21 |
st.session_state.history = []
|
22 |
st.session_state.summary = ""
|
23 |
|
24 |
-
# --
|
25 |
TRIGGER_PHRASES = ["kill myself", "end it all", "suicide", "not worth living", "can't go on"]
|
26 |
def is_high_risk(text):
|
27 |
return any(phrase in text.lower() for phrase in TRIGGER_PHRASES)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
outputs = model.generate(
|
33 |
-
**inputs,
|
34 |
-
max_new_tokens=max_new_tokens,
|
35 |
-
do_sample=True,
|
36 |
-
temperature=temperature,
|
37 |
-
pad_token_id=tokenizer.eos_token_id
|
38 |
-
)
|
39 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
40 |
|
41 |
# -- STYLING --
|
42 |
st.markdown("""
|
@@ -59,22 +54,21 @@ st.markdown(f"ποΈ {datetime.now().strftime('%B %d, %Y')} | {len(st.session_s
|
|
59 |
# -- USER INPUT --
|
60 |
user_input = st.text_input("How are you feeling today?", placeholder="Start typing...")
|
61 |
|
62 |
-
# --
|
63 |
if user_input:
|
64 |
context = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history[-4:]])
|
65 |
with st.spinner("TARS is reflecting..."):
|
66 |
-
time.sleep(
|
67 |
if is_high_risk(user_input):
|
68 |
response = "I'm really sorry you're feeling this way. You're not alone β please talk to someone you trust or a mental health professional. π"
|
69 |
else:
|
70 |
-
prompt = f"You are
|
71 |
-
response =
|
72 |
-
response = response.split("AI:")[-1].strip()
|
73 |
timestamp = datetime.now().strftime("%H:%M")
|
74 |
st.session_state.history.append(("π§ You", user_input, timestamp))
|
75 |
st.session_state.history.append(("π€ TARS", response, timestamp))
|
76 |
|
77 |
-
# -- DISPLAY
|
78 |
st.markdown("## π¨οΈ Session")
|
79 |
for speaker, msg, time in st.session_state.history:
|
80 |
st.markdown(f"**{speaker} [{time}]:** {msg}")
|
@@ -82,15 +76,14 @@ for speaker, msg, time in st.session_state.history:
|
|
82 |
# -- SUMMARY --
|
83 |
if st.button("π§Ύ Generate Session Summary"):
|
84 |
convo = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history])
|
85 |
-
|
86 |
try:
|
87 |
-
summary =
|
88 |
-
st.session_state.summary = summary
|
89 |
except Exception as e:
|
90 |
-
st.error("
|
91 |
st.exception(e)
|
92 |
|
93 |
-
# -- DISPLAY SUMMARY --
|
94 |
if st.session_state.summary:
|
95 |
st.markdown("### π§ Session Note")
|
96 |
st.markdown(st.session_state.summary)
|
@@ -98,4 +91,4 @@ if st.session_state.summary:
|
|
98 |
|
99 |
# -- FOOTER --
|
100 |
st.markdown("---")
|
101 |
-
st.caption("TARS is not a therapist but a quiet assistant that reflects with you.")
|
|
|
2 |
import time
|
3 |
from datetime import datetime
|
4 |
import streamlit as st
|
5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
|
|
6 |
|
7 |
# -- SETUP --
|
8 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
9 |
|
10 |
@st.cache_resource
|
11 |
+
def load_pipeline():
|
12 |
+
model_id = "tiiuae/falcon-7b-instruct"
|
13 |
+
pipe = pipeline(
|
14 |
+
"text-generation",
|
15 |
+
model=AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True),
|
16 |
+
tokenizer=AutoTokenizer.from_pretrained(model_id, trust_remote_code=True),
|
17 |
+
device_map="auto"
|
18 |
+
)
|
19 |
+
return pipe
|
20 |
|
21 |
+
generator = load_pipeline()
|
22 |
|
23 |
if "history" not in st.session_state:
|
24 |
st.session_state.history = []
|
25 |
st.session_state.summary = ""
|
26 |
|
27 |
+
# -- UTILS --
|
28 |
TRIGGER_PHRASES = ["kill myself", "end it all", "suicide", "not worth living", "can't go on"]
|
29 |
def is_high_risk(text):
|
30 |
return any(phrase in text.lower() for phrase in TRIGGER_PHRASES)
|
31 |
|
32 |
+
def get_reply(prompt, max_new_tokens=150, temperature=0.7):
|
33 |
+
out = generator(prompt, max_new_tokens=max_new_tokens, temperature=temperature)[0]["generated_text"]
|
34 |
+
return out.split("AI:")[-1].strip() if "AI:" in out else out.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# -- STYLING --
|
37 |
st.markdown("""
|
|
|
54 |
# -- USER INPUT --
|
55 |
user_input = st.text_input("How are you feeling today?", placeholder="Start typing...")
|
56 |
|
57 |
+
# -- MAIN FLOW --
|
58 |
if user_input:
|
59 |
context = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history[-4:]])
|
60 |
with st.spinner("TARS is reflecting..."):
|
61 |
+
time.sleep(1)
|
62 |
if is_high_risk(user_input):
|
63 |
response = "I'm really sorry you're feeling this way. You're not alone β please talk to someone you trust or a mental health professional. π"
|
64 |
else:
|
65 |
+
prompt = f"You are a kind and calm AI assistant.\n{context}\nUser: {user_input}\nAI:"
|
66 |
+
response = get_reply(prompt, max_new_tokens=150)
|
|
|
67 |
timestamp = datetime.now().strftime("%H:%M")
|
68 |
st.session_state.history.append(("π§ You", user_input, timestamp))
|
69 |
st.session_state.history.append(("π€ TARS", response, timestamp))
|
70 |
|
71 |
+
# -- CHAT DISPLAY --
|
72 |
st.markdown("## π¨οΈ Session")
|
73 |
for speaker, msg, time in st.session_state.history:
|
74 |
st.markdown(f"**{speaker} [{time}]:** {msg}")
|
|
|
76 |
# -- SUMMARY --
|
77 |
if st.button("π§Ύ Generate Session Summary"):
|
78 |
convo = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history])
|
79 |
+
prompt = f"Summarize this conversation in 3 reflective sentences:\n{convo}\nSummary:"
|
80 |
try:
|
81 |
+
summary = get_reply(prompt, max_new_tokens=200, temperature=0.5)
|
82 |
+
st.session_state.summary = summary
|
83 |
except Exception as e:
|
84 |
+
st.error("Summary generation failed.")
|
85 |
st.exception(e)
|
86 |
|
|
|
87 |
if st.session_state.summary:
|
88 |
st.markdown("### π§ Session Note")
|
89 |
st.markdown(st.session_state.summary)
|
|
|
91 |
|
92 |
# -- FOOTER --
|
93 |
st.markdown("---")
|
94 |
+
st.caption("TARS is not a therapist, but a quiet assistant that reflects with you.")
|