import streamlit as st from datetime import datetime import time from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM import os # -- SETUP -- os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" @st.cache_resource def load_model(): model_id = "sshleifer/tiny-gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) return pipeline("text-generation", model=model, tokenizer=tokenizer) generator = load_model() if "history" not in st.session_state: st.session_state.history = [] st.session_state.summary = "" TRIGGER_PHRASES = ["kill myself", "end it all", "suicide", "not worth living", "can't go on"] def is_high_risk(text): return any(phrase in text.lower() for phrase in TRIGGER_PHRASES) def get_response(prompt, max_new_tokens=100, temperature=0.7): output = generator(prompt, max_new_tokens=max_new_tokens, temperature=temperature)[0]["generated_text"] return output.strip() st.title("๐Ÿง  TARS.help") st.markdown("### A quiet AI that reflects and replies.") st.markdown(f"๐Ÿ—“๏ธ {datetime.now().strftime('%B %d, %Y')} | {len(st.session_state.history)//2} exchanges") user_input = st.text_input("How are you feeling today?", placeholder="Start typing...") if user_input: context = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history[-4:]]) with st.spinner("TARS is reflecting..."): time.sleep(1) if is_high_risk(user_input): response = "I'm really sorry you're feeling this way. You're not alone โ€” please talk to someone you trust or a mental health professional. ๐Ÿ’™" else: prompt = f"You are a calm, empathetic AI assistant.\n{context}\nUser: {user_input}\nAI:" response = get_response(prompt) timestamp = datetime.now().strftime("%H:%M") st.session_state.history.append(("๐Ÿง You", user_input, timestamp)) st.session_state.history.append(("๐Ÿค– TARS", response, timestamp)) st.markdown("## ๐Ÿ—จ๏ธ Session") for speaker, msg, time in st.session_state.history: st.markdown(f"**{speaker} [{time}]:** {msg}") if st.button("๐Ÿงพ Generate Session Summary"): convo = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history]) prompt = f"Summarize the emotional tone and themes in this conversation:\n{convo}\nSummary:" try: summary = get_response(prompt, max_new_tokens=100, temperature=0.5) st.session_state.summary = summary except Exception as e: st.error("Summary generation failed.") st.exception(e) if st.session_state.summary: st.markdown("### ๐Ÿง  Session Note") st.markdown(st.session_state.summary) st.download_button("๐Ÿ“ฅ Download Summary", st.session_state.summary, file_name="tars_session.txt") st.markdown("---") st.caption("TARS is not a therapist. If you're in crisis, please seek help from a professional.")