Spaces:
Sleeping
Sleeping
File size: 8,267 Bytes
c77acf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
from PIL import Image
import cv2
import numpy as np
import supervision as sv
import matplotlib.pyplot as plt
def preprocess_image(image_path):
# Load the image
#image = Image.open(image_path)
#image = cv2.imread(image_path)
image = np.array(image_path)
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
plt.subplot(3, 4, 1)
plt.title("Grayscale")
plt.imshow(gray, cmap='gray')
# Remove noise
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
plt.subplot(3, 4, 2)
plt.title("Blurred")
plt.imshow(blurred, cmap='gray')
# Thresholding/Binarization
_, binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
plt.subplot(3, 4, 3)
plt.title("Binary")
plt.imshow(binary, cmap='gray')
# Dilation and Erosion
kernel = np.ones((1, 1), np.uint8)
dilated = cv2.dilate(binary, kernel, iterations=1)
eroded = cv2.erode(dilated, kernel, iterations=1)
plt.subplot(3, 4, 4)
plt.title("Eroded")
plt.imshow(eroded, cmap='gray')
# Display the original image and the edge-detected image
edges = cv2.Canny(eroded, 100, 200)
plt.subplot(3,4,5)
plt.title('Edge Image')
plt.imshow(edges, cmap='gray')
# Deskewing
coords = np.column_stack(np.where(edges > 0))
angle = cv2.minAreaRect(coords)[-1]
print(f"Detected angle: {angle}")
if angle < -45:
angle = -(90 + angle)
else:
angle = -angle
angle = 0
print(f"Corrected angle: {angle}")
(h, w) = edges.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
deskewed = cv2.warpAffine(edges, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
plt.subplot(3, 4, 6)
plt.title("Deskewed")
plt.imshow(deskewed, cmap='gray')
# Convert to grayscale
#gray = cv2.cvtColor(deskewed, cv2.COLOR_BGR2GRAY)
# Find contours
contours, hierarchy = cv2.findContours(deskewed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Draw contours on the original image
contour_image = image.copy()
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)
plt.subplot(3, 4, 7)
plt.title('Contours')
plt.imshow(cv2.cvtColor(contour_image, cv2.COLOR_BGR2RGB))
plt.show()
return contour_image
##########################################################################################################################
import os
from PIL import Image
from inference_sdk import InferenceHTTPClient
from roboflow import Roboflow
from PIL import Image
import supervision as sv
import cv2
CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key="LSbJ0tl3WTLn4Aqar0Sp"
)
def creating_display_image(preprocessed_image):
# Perform inference
result_doch1 = CLIENT.infer(preprocessed_image, model_id="doctor-s-handwriting/1")
# Print or process the result
#print(result_doch1)
labels = [item["class"] for item in result_doch1["predictions"]]
detections = sv.Detections.from_inference(result_doch1)
image_np = np.array(preprocessed_image)
label_annotator = sv.LabelAnnotator()
bounding_box_annotator = sv.BoxAnnotator()
annotated_image = bounding_box_annotator.annotate(
scene=image_np, detections=detections)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections, labels=labels)
annotated_image_pil = Image.fromarray(annotated_image)
sv.plot_image(image=annotated_image_pil, size=(16, 16))
return annotated_image_pil
######################################################################################################################
import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import supervision as sv
def process_and_plot_image(preprocessed_image):
# Convert preprocessed image to numpy array
image_np = np.array(preprocessed_image)
# Perform inference
result_doch1 = CLIENT.infer(preprocessed_image, model_id="doctor-s-handwriting/1")
# Extract labels and detections
labels = [item["class"] for item in result_doch1["predictions"]]
detections = sv.Detections.from_inference(result_doch1)
# Debug: Print unsorted detections and labels
print("Unsorted Detections and Labels:")
for i, detection in enumerate(detections):
print(f"Detection {i}: {detection} - Label: {labels[i]}")
# Function to extract the x1 coordinate from the detection
def get_x1(detection):
return detection.xyxy[0][0] # Access the first element of the bounding box array
# Sort detections and labels by the x-coordinate of the bounding box
sorted_indices = sorted(range(len(detections)), key=lambda i: get_x1(detections[i]))
sorted_detections = [detections[i] for i in sorted_indices]
sorted_labels = [labels[i] for i in sorted_indices]
# Debug: Print sorted detections and labels
print("Sorted Detections and Labels:")
for i, detection in enumerate(sorted_detections):
print(f"Detection {i}: {detection} - Label: {sorted_labels[i]}")
# Function to plot bounding boxes
def plot_bounding_boxes(image_np, detections):
image_with_boxes = image_np.copy()
for detection in detections:
x1, y1, x2, y2 = detection.xyxy[0] # Extract bounding box coordinates
cv2.rectangle(image_with_boxes, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2)
return image_with_boxes
# Function to plot labels
def plot_labels(image_np, detections, labels):
image_with_labels = image_np.copy()
for i, detection in enumerate(detections):
x1, y1, x2, y2 = detection.xyxy[0] # Extract bounding box coordinates
label = labels[i]
cv2.putText(image_with_labels, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
return image_with_labels
# Plot bounding boxes with sorted detections
image_with_boxes = plot_bounding_boxes(image_np, sorted_detections)
# Plot labels with sorted detections and labels
image_with_labels = plot_labels(image_np, sorted_detections, sorted_labels)
# Convert images to RGB for plotting with matplotlib
image_with_boxes_rgb = cv2.cvtColor(image_with_boxes, cv2.COLOR_BGR2RGB)
image_with_labels_rgb = cv2.cvtColor(image_with_labels, cv2.COLOR_BGR2RGB)
# Plot results using matplotlib
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title("Bounding Boxes")
plt.imshow(image_with_boxes_rgb)
plt.axis('off')
plt.subplot(1, 2, 2)
plt.title("Labels")
plt.imshow(image_with_labels_rgb)
plt.axis('off')
plt.show()
return sorted_labels
##########################################################################################################################
def image_result(sorted_labels):
# Convert list to string
resulting_string = ''.join(sorted_labels)
return resulting_string
############################################################################################################################
import streamlit as st
from PIL import Image
# Title of the app
st.title("DOCTOR HANDWRITING DETECTION")
# Upload an image file
uploaded_image = st.file_uploader("Choose an image...", type="jpg")
if uploaded_image is not None:
# Display the image
image = Image.open(uploaded_image)
preprocessed_image_for_streamlit = preprocess_image(image)
display_boundingbox = creating_display_image(preprocessed_image_for_streamlit)
result = process_and_plot_image(preprocessed_image_for_streamlit)
input_image_result = image_result(result)
cv2.imwrite('preprocessed_image_2.jpg', preprocessed_image_for_streamlit)
st.image(image, caption='Input image by user', use_column_width=True)
st.image(display_boundingbox, caption='Displayed image through bounding boxes', use_column_width=True)
# Display some text
st.write("Detected text on the image uploaded by the user")
st.write(input_image_result)
else:
st.write("Please upload an image file.")
|