Spaces:
Sleeping
Sleeping
File size: 6,427 Bytes
c77acf1 165caa4 c77acf1 165caa4 c77acf1 11b8ff3 165caa4 11b8ff3 165caa4 11b8ff3 165caa4 11b8ff3 165caa4 c77acf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import pandas as pd
dataset_1= pd.read_csv("training_data.csv")
#dataset_1
#for i in dataset_1.columns:
#print(i)
# Create a new column with merged column names where value is 1
dataset_1['symptoms_text'] = dataset_1.apply(lambda row: ','.join([col for col in dataset_1.columns if row[col] == 1]), axis=1)
#print("Original DataFrame:")
#print(dataset_1)
#dataset_1.to_csv("training_data_after_changes.csv")
final_dataset = pd.DataFrame(dataset_1[["prognosis","symptoms_text"]])
final_dataset.columns = ['label', 'text']
#final_dataset.to_csv("final_dataset.csv")
#final_dataset
##############3
import pandas as pd
dataset_2= pd.read_csv("Symptom2Disease.csv")
dataset_2 = dataset_2[["label","text"]]
#dataset_2
#################
df_combined = pd.concat([final_dataset, dataset_2], axis=0, ignore_index=True)
#df_combined
################
import nltk
nltk.download('stopwords')
import pandas as pd
import re
import string
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
# Download necessary NLTK data files
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
def preprocess_text(text):
# Convert to lowercase
text = text.lower()
cleaned_text = re.sub(r'[^a-zA-Z0-9\s\,]', ' ', text)
# Tokenize text
tokens = word_tokenize(cleaned_text)
# Remove stop words
stop_words = set(stopwords.words('english'))
tokens = [word for word in tokens if word not in stop_words]
# Rejoin tokens into a single string
cleaned_text = ' '.join(tokens)
return cleaned_text
df_combined["cleaned_text"] = df_combined["text"].apply(preprocess_text)
#print(df_combined)
###########
#df_combined.to_csv("final_dataset_llms.csv")
###########
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
print("scikit-learn imported successfully!")
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
# Load your dataset
data = pd.read_csv('final_dataset_llms.csv') # Replace with your file path
# Example columns: 'symptoms' and 'label'
X = data['cleaned_text']
y = data['label']
# Convert text data to numerical data
vectorizer = CountVectorizer()
X_vectorized = vectorizer.fit_transform(X)
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_vectorized, y, test_size=0.2, random_state=42)
# Train the model
model = LogisticRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
print('Classification Report:')
print(classification_report(y_test, y_pred))
########################pip
#########################
###############################
###########################################
data['label'].nunique()
#############################################
def precaution(label):
dataset_precau = pd.read_csv("disease_precaution.csv", encoding='latin1')
label = str(label)
label = label.lower()
dataset_precau["Disease"] = dataset_precau["Disease"].str.lower()
# Filter the DataFrame for the given label
filtered_precautions = dataset_precau[dataset_precau["Disease"] == label]
# Check if any precautions were found
if not filtered_precautions.empty:
# Extract precaution columns
precautions = filtered_precautions[["Precaution_1", "Precaution_2", "Precaution_3", "Precaution_4"]]
return precautions.values.tolist() # Convert DataFrame to a list of lists
else:
return [] # Return an empty list if no matching label is found
def occurance(label):
dataset_occur = pd.read_csv("disease_riskFactors.csv", encoding='latin1')
label = str(label)
label = label.lower()
dataset_occur["DNAME"] = dataset_occur["DNAME"].str.lower()
# Filter the DataFrame for the given label
filtered_occurrence = dataset_occur[dataset_occur["DNAME"] == label]
# Check if any occurrences were found
if not filtered_occurrence.empty:
occurrences = filtered_occurrence["OCCUR"].tolist() # Convert Series to list
return occurrences
else:
return [] # Return an empty list if no matching label is found
################################################################################
import streamlit as st
import numpy as np
import sklearn
from sklearn.feature_extraction.text import CountVectorizer
st.title("SYMPTOMS DETECTION, PRECAUTION n OCCURANCE")
symptoms = st.text_area("Enter your symptoms (comma-separated):")
if symptoms.lower() != "exit":
# Convert input string to a list of symptoms
# Function to predict new symptoms
def predict_symptoms(new_symptoms):
preprocessed_text = preprocess_text(new_symptoms)
if isinstance(preprocessed_text, str):
new_symptoms = [preprocessed_text]
# Vectorize the new symptoms
new_symptoms_vectorized = vectorizer.transform(new_symptoms)
# Make predictions
prediction = model.predict(new_symptoms_vectorized)
return prediction
st.write("disease :")
symptoms_list = [symptom.strip() for symptom in symptoms.split(',')]
# Predict symptoms
prediction = predict_symptoms(' '.join(symptoms_list))
st.write(prediction[0]) # Extract the string from the numpy array
# Display precautions
st.write("Precautions:")
precautions = precaution(prediction[0]) # Pass the string, not the array
if precautions:
for precaution_list in precautions:
for precaution_item in precaution_list:
if precaution_item: # Check if the item is not None or empty
st.write(f"- {precaution_item}")
else:
st.write("No precautions found for this disease.")
# Display occurrences
st.write("Occurrence:")
occurrences = occurance(prediction[0]) # Pass the string, not the array
if occurrences:
for occurrence in occurrences:
st.write(f"- {occurrence}")
else:
st.write("No occurrence information found for this disease.")
else:
st.write("Please enter symptoms to get the disease.")
# Get user input
# Make a prediction
|