File size: 6,427 Bytes
c77acf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165caa4
 
 
 
 
 
 
c77acf1
 
 
 
 
 
 
 
 
 
165caa4
 
 
 
 
 
c77acf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b8ff3
165caa4
 
 
11b8ff3
165caa4
 
 
11b8ff3
 
165caa4
 
 
 
 
11b8ff3
165caa4
 
 
 
 
c77acf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import pandas as pd

dataset_1= pd.read_csv("training_data.csv")
#dataset_1

#for i in dataset_1.columns:

    #print(i)


# Create a new column with merged column names where value is 1
dataset_1['symptoms_text'] = dataset_1.apply(lambda row: ','.join([col for col in dataset_1.columns if row[col] == 1]), axis=1)

#print("Original DataFrame:")
#print(dataset_1)



#dataset_1.to_csv("training_data_after_changes.csv")


final_dataset = pd.DataFrame(dataset_1[["prognosis","symptoms_text"]])
final_dataset.columns = ['label', 'text']
#final_dataset.to_csv("final_dataset.csv")
#final_dataset

##############3
import pandas as pd
dataset_2= pd.read_csv("Symptom2Disease.csv")
dataset_2 = dataset_2[["label","text"]]
#dataset_2

#################
df_combined = pd.concat([final_dataset, dataset_2], axis=0, ignore_index=True)
#df_combined

################
import nltk
nltk.download('stopwords')
import pandas as pd
import re
import string
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer


# Download necessary NLTK data files
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')

def preprocess_text(text):
    # Convert to lowercase
    text = text.lower()
    
    cleaned_text = re.sub(r'[^a-zA-Z0-9\s\,]', ' ', text)
    # Tokenize text
    tokens = word_tokenize(cleaned_text)
    
    # Remove stop words
    stop_words = set(stopwords.words('english'))
    tokens = [word for word in tokens if word not in stop_words]
    
    
    # Rejoin tokens into a single string
    cleaned_text = ' '.join(tokens)
    
    return cleaned_text

df_combined["cleaned_text"] = df_combined["text"].apply(preprocess_text)

#print(df_combined)


###########
#df_combined.to_csv("final_dataset_llms.csv")

###########

import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
print("scikit-learn imported successfully!")
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report

# Load your dataset
data = pd.read_csv('final_dataset_llms.csv')  # Replace with your file path

# Example columns: 'symptoms' and 'label'
X = data['cleaned_text']
y = data['label']

# Convert text data to numerical data
vectorizer = CountVectorizer()
X_vectorized = vectorizer.fit_transform(X)

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_vectorized, y, test_size=0.2, random_state=42)

# Train the model
model = LogisticRegression()
model.fit(X_train, y_train)

# Make predictions
y_pred = model.predict(X_test)

# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
print('Classification Report:')
print(classification_report(y_test, y_pred))

########################pip
#########################
###############################
###########################################

data['label'].nunique()

#############################################

def precaution(label):
    dataset_precau = pd.read_csv("disease_precaution.csv", encoding='latin1')
    label = str(label)
    label = label.lower() 
    
    dataset_precau["Disease"] = dataset_precau["Disease"].str.lower()
    # Filter the DataFrame for the given label
    filtered_precautions = dataset_precau[dataset_precau["Disease"] == label]
    
    # Check if any precautions were found
    if not filtered_precautions.empty:
        # Extract precaution columns
        precautions = filtered_precautions[["Precaution_1", "Precaution_2", "Precaution_3", "Precaution_4"]]
        return precautions.values.tolist()  # Convert DataFrame to a list of lists
    else:
        return []  # Return an empty list if no matching label is found

def occurance(label):
    dataset_occur = pd.read_csv("disease_riskFactors.csv", encoding='latin1')
    label = str(label)
    label = label.lower() 
    
    dataset_occur["DNAME"] = dataset_occur["DNAME"].str.lower()
    # Filter the DataFrame for the given label
    filtered_occurrence = dataset_occur[dataset_occur["DNAME"] == label]

    # Check if any occurrences were found
    if not filtered_occurrence.empty:
        occurrences = filtered_occurrence["OCCUR"].tolist()  # Convert Series to list
        return occurrences
    else:
        return []  # Return an empty list if no matching label is found
################################################################################

import streamlit as st
import numpy as np
import sklearn
from sklearn.feature_extraction.text import CountVectorizer

st.title("SYMPTOMS DETECTION, PRECAUTION n OCCURANCE")

symptoms = st.text_area("Enter your symptoms (comma-separated):")

if symptoms.lower() != "exit":
    # Convert input string to a list of symptoms
    

    # Function to predict new symptoms
    def predict_symptoms(new_symptoms):
        preprocessed_text = preprocess_text(new_symptoms)

        if isinstance(preprocessed_text, str):
            new_symptoms = [preprocessed_text]

        # Vectorize the new symptoms
        new_symptoms_vectorized = vectorizer.transform(new_symptoms)
        # Make predictions
        prediction = model.predict(new_symptoms_vectorized)

        return prediction
    
    st.write("disease :")
    symptoms_list = [symptom.strip() for symptom in symptoms.split(',')]

    # Predict symptoms
    prediction = predict_symptoms(' '.join(symptoms_list))

    
    st.write(prediction[0]) # Extract the string from the numpy array
    
    # Display precautions
    st.write("Precautions:")
    precautions = precaution(prediction[0]) # Pass the string, not the array
    if precautions:
        for precaution_list in precautions:
            for precaution_item in precaution_list:
                if precaution_item: # Check if the item is not None or empty
                    st.write(f"- {precaution_item}")
    else:
        st.write("No precautions found for this disease.")

    # Display occurrences
    st.write("Occurrence:")
    occurrences = occurance(prediction[0]) # Pass the string, not the array
    if occurrences:
        for occurrence in occurrences:
            st.write(f"- {occurrence}")
    else:
        st.write("No occurrence information found for this disease.")

else:
    st.write("Please enter symptoms to get the disease.")


    

# Get user input

# Make a prediction