Spaces:
Sleeping
Sleeping
Undo last commit
Browse files- frontend/app.py +432 -12
frontend/app.py
CHANGED
@@ -56,23 +56,443 @@ st.title("Medi Scape Dashboard")
|
|
56 |
# --- Session State Initialization ---
|
57 |
if 'disease_model' not in st.session_state:
|
58 |
try:
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
st.session_state.disease_model = tf.keras.models.load_model(model_path)
|
66 |
-
else: # Running locally
|
67 |
-
model_path = 'FINAL_MODEL.keras'
|
68 |
st.session_state.disease_model = tf.keras.models.load_model(model_path)
|
69 |
-
|
70 |
print("Disease model loaded successfully!")
|
71 |
except FileNotFoundError:
|
72 |
-
st.error("Disease classification model not found. Please ensure 'FINAL_MODEL.zip'
|
73 |
st.session_state.disease_model = None
|
74 |
except PermissionError:
|
75 |
st.error("Permission error accessing 'model.weights.h5'. Please ensure the file is not being used by another process.")
|
76 |
st.session_state.disease_model = None
|
77 |
|
78 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# --- Session State Initialization ---
|
57 |
if 'disease_model' not in st.session_state:
|
58 |
try:
|
59 |
+
model_path = 'FINAL_MODEL.zip' # Updated path to zip file
|
60 |
+
print(f"Attempting to load disease model from: {model_path}")
|
61 |
+
print(f"Model file exists: {os.path.exists(model_path)}")
|
62 |
+
with tf.keras.utils.get_file('FINAL_MODEL.keras', model_path, extract=True) as extracted_model_path:
|
63 |
+
model_dir = os.path.dirname(extracted_model_path)
|
64 |
+
model_path = os.path.join(model_dir, 'FINAL_MODEL.keras')
|
|
|
|
|
|
|
65 |
st.session_state.disease_model = tf.keras.models.load_model(model_path)
|
|
|
66 |
print("Disease model loaded successfully!")
|
67 |
except FileNotFoundError:
|
68 |
+
st.error("Disease classification model not found. Please ensure 'FINAL_MODEL.zip' is in the same directory as this app.")
|
69 |
st.session_state.disease_model = None
|
70 |
except PermissionError:
|
71 |
st.error("Permission error accessing 'model.weights.h5'. Please ensure the file is not being used by another process.")
|
72 |
st.session_state.disease_model = None
|
73 |
|
74 |
+
# Load the vectorizer
|
75 |
+
if 'vectorizer' not in st.session_state:
|
76 |
+
try:
|
77 |
+
vectorizer_path = "vectorizer.pkl"
|
78 |
+
print(f"Attempting to load vectorizer from: {vectorizer_path}")
|
79 |
+
print(f"Vectorizer file exists: {os.path.exists(vectorizer_path)}")
|
80 |
+
st.session_state.vectorizer = pd.read_pickle(vectorizer_path)
|
81 |
+
print("Vectorizer loaded successfully!")
|
82 |
+
except FileNotFoundError:
|
83 |
+
st.error("Vectorizer file not found. Please ensure 'vectorizer.pkl' is in the same directory as this app.")
|
84 |
+
st.session_state.vectorizer = None
|
85 |
+
except Exception as e:
|
86 |
+
st.error(f"An error occurred while loading the vectorizer: {e}")
|
87 |
+
st.session_state.vectorizer = None
|
88 |
+
|
89 |
+
if 'model_llm' not in st.session_state:
|
90 |
+
try:
|
91 |
+
llm_model_path = "logistic_regression_model.pkl" # Corrected path
|
92 |
+
print(f"Attempting to load LLM model from: {llm_model_path}")
|
93 |
+
print(f"LLM Model file exists: {os.path.exists(llm_model_path)}")
|
94 |
+
st.session_state.model_llm = pd.read_pickle(llm_model_path)
|
95 |
+
print("LLM model loaded successfully!")
|
96 |
+
except FileNotFoundError:
|
97 |
+
st.error("LLM model file not found. Please ensure 'logistic_regression_model.pkl' is in the 'frontend' directory.")
|
98 |
+
st.session_state.model_llm = None
|
99 |
+
except Exception as e:
|
100 |
+
st.error(f"An error occurred while loading the LLM model: {e}")
|
101 |
+
st.session_state.model_llm = None
|
102 |
+
|
103 |
+
# --- End of Session State Initialization ---
|
104 |
+
|
105 |
+
# Load the disease classification model
|
106 |
+
try:
|
107 |
+
model_path = 'FINAL_MODEL.zip' # Updated path to zip file
|
108 |
+
with tf.keras.utils.get_file('FINAL_MODEL.keras', model_path, extract=True) as extracted_model_path:
|
109 |
+
model_dir = os.path.dirname(extracted_model_path)
|
110 |
+
model_path = os.path.join(model_dir, 'FINAL_MODEL.keras')
|
111 |
+
disease_model = tf.keras.models.load_model(model_path)
|
112 |
+
except FileNotFoundError:
|
113 |
+
st.error("Disease classification model not found. Please ensure 'FINAL_MODEL.zip' is in the same directory as this app.")
|
114 |
+
disease_model = None
|
115 |
+
except PermissionError:
|
116 |
+
st.error("Permission error accessing 'model.weights.h5'. Please ensure the file is not being used by another process.")
|
117 |
+
disease_model = None
|
118 |
+
|
119 |
+
# Sidebar Navigation
|
120 |
+
st.sidebar.title("Navigation")
|
121 |
+
page = st.sidebar.radio("Go to", ["Home", "AI Chatbot Diagnosis", "Drug Identification", "Disease Detection", "Outbreak Alert"])
|
122 |
+
|
123 |
+
# Access secrets using st.secrets
|
124 |
+
if "INFERENCE_API_URL" not in st.secrets or "INFERENCE_API_KEY" not in st.secrets:
|
125 |
+
st.error("Please make sure to set your secrets in the Streamlit secrets settings.")
|
126 |
+
else:
|
127 |
+
# Initialize the Inference Client
|
128 |
+
CLIENT = InferenceHTTPClient(
|
129 |
+
api_url=st.secrets["INFERENCE_API_URL"],
|
130 |
+
api_key=st.secrets["INFERENCE_API_KEY"]
|
131 |
+
)
|
132 |
+
|
133 |
+
# Function to preprocess the image
|
134 |
+
def preprocess_image(image_path):
|
135 |
+
# Load the image
|
136 |
+
image = cv2.imread(image_path)
|
137 |
+
|
138 |
+
# Convert to grayscale
|
139 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
140 |
+
|
141 |
+
# Remove noise
|
142 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
143 |
+
|
144 |
+
# Thresholding/Binarization
|
145 |
+
_, binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
146 |
+
|
147 |
+
# Dilation and Erosion
|
148 |
+
kernel = np.ones((1, 1), np.uint8)
|
149 |
+
dilated = cv2.dilate(binary, kernel, iterations=1)
|
150 |
+
eroded = cv2.erode(dilated, kernel, iterations=1)
|
151 |
+
|
152 |
+
# Edge detection
|
153 |
+
edges = cv2.Canny(eroded, 100, 200)
|
154 |
+
|
155 |
+
# Deskewing
|
156 |
+
coords = np.column_stack(np.where(edges > 0))
|
157 |
+
angle = cv2.minAreaRect(coords)[-1]
|
158 |
+
if angle < -45:
|
159 |
+
angle = -(90 + angle)
|
160 |
+
else:
|
161 |
+
angle = -angle
|
162 |
+
|
163 |
+
(h, w) = edges.shape[:2]
|
164 |
+
center = (w // 2, h // 2)
|
165 |
+
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
166 |
+
deskewed = cv2.warpAffine(edges, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
|
167 |
+
|
168 |
+
# Find contours
|
169 |
+
contours, _ = cv2.findContours(deskewed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
170 |
+
|
171 |
+
# Draw contours on the original image
|
172 |
+
contour_image = image.copy()
|
173 |
+
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)
|
174 |
+
|
175 |
+
return contour_image
|
176 |
+
|
177 |
+
def get_x1(detection):
|
178 |
+
return detection.xyxy[0][0]
|
179 |
+
|
180 |
+
# --- Prediction function (using session state) ---
|
181 |
+
def predict_disease(symptoms):
|
182 |
+
if st.session_state.vectorizer is not None and st.session_state.model_llm is not None:
|
183 |
+
preprocessed_symptoms = preprocess_text(symptoms)
|
184 |
+
symptoms_vectorized = st.session_state.vectorizer.transform([preprocessed_symptoms])
|
185 |
+
prediction = st.session_state.model_llm.predict(symptoms_vectorized)
|
186 |
+
return prediction[0]
|
187 |
+
else:
|
188 |
+
st.error("Unable to make prediction. Vectorizer or LLM model is not loaded.")
|
189 |
+
return None
|
190 |
+
|
191 |
+
# --- New function to analyze X-ray with LLM ---
|
192 |
+
def analyze_xray_with_llm(predicted_class):
|
193 |
+
prompt = f"""
|
194 |
+
Based on a chest X-ray analysis, the predicted condition is {predicted_class}.
|
195 |
+
Please provide a concise summary of this condition, including:
|
196 |
+
- A brief description of the condition.
|
197 |
+
- Common symptoms associated with it.
|
198 |
+
- Potential causes.
|
199 |
+
- General treatment approaches.
|
200 |
+
- Any other relevant information for a patient.
|
201 |
+
"""
|
202 |
+
llm_response = get_ai71_response(prompt)
|
203 |
+
st.write("## LLM Analysis of X-ray Results:")
|
204 |
+
st.write(llm_response)
|
205 |
+
|
206 |
+
# --- Functions for Symptom Detection ---
|
207 |
+
def precaution(label):
|
208 |
+
dataset_precau = pd.read_csv("disease_precaution.csv", encoding='latin1')
|
209 |
+
label = str(label)
|
210 |
+
label = label.lower()
|
211 |
+
|
212 |
+
dataset_precau["Disease"] = dataset_precau["Disease"].str.lower()
|
213 |
+
# Filter the DataFrame for the given label
|
214 |
+
filtered_precautions = dataset_precau[dataset_precau["Disease"] == label]
|
215 |
+
|
216 |
+
# Extract precaution columns
|
217 |
+
precautions = filtered_precautions[["Precaution_1", "Precaution_2", "Precaution_3", "Precaution_4"]]
|
218 |
+
return precautions.values.tolist() # Convert DataFrame to a list of lists
|
219 |
+
# Return an empty list if no matching label is found
|
220 |
+
|
221 |
+
def occurance(label):
|
222 |
+
dataset_occur = pd.read_csv("disease_riskFactors.csv", encoding='latin1')
|
223 |
+
label = str(label)
|
224 |
+
label = label.lower()
|
225 |
+
|
226 |
+
dataset_occur["DNAME"] = dataset_occur["DNAME"].str.lower()
|
227 |
+
# Filter the DataFrame for the given label
|
228 |
+
filtered_occurrence = dataset_occur[dataset_occur["DNAME"] == label]
|
229 |
+
|
230 |
+
occurrences = filtered_occurrence["OCCUR"].tolist() # Convert Series to list
|
231 |
+
return occurrences
|
232 |
+
# Return an empty list if no matching label is found
|
233 |
+
|
234 |
+
if page == "Home":
|
235 |
+
st.markdown("## Welcome to Medi Scape")
|
236 |
+
st.write("Medi Scape is an AI-powered healthcare application designed to streamline the process of understanding and managing medical information. It leverages advanced AI models to provide features such as prescription analysis, disease detection from chest X-rays, and symptom-based diagnosis assistance.")
|
237 |
+
|
238 |
+
st.markdown("## Features")
|
239 |
+
st.write("Medi Scape provides various AI-powered tools for remote healthcare, including:")
|
240 |
+
features = [
|
241 |
+
"**AI Chatbot Diagnosis:** Interact with an AI chatbot for preliminary diagnosis and medical information.",
|
242 |
+
"**Drug Identification:** Upload a prescription image to identify medications and access relevant details.",
|
243 |
+
"**Doctor's Handwriting Identification:** Our system can accurately recognize and process doctor's handwriting.",
|
244 |
+
"**Disease Detection:** Upload a chest X-ray image to detect potential diseases.",
|
245 |
+
"**Outbreak Alert:** Stay informed about potential disease outbreaks in your area."
|
246 |
+
]
|
247 |
+
for feature in features:
|
248 |
+
st.markdown(f"- {feature}")
|
249 |
+
|
250 |
+
st.markdown("## How it Works")
|
251 |
+
steps = [
|
252 |
+
"**Upload:** You can upload a prescription image for drug identification or a chest X-ray image for disease detection.",
|
253 |
+
"**Process:** Our AI models will analyze the image and extract relevant information.",
|
254 |
+
"**Results:** You will receive identified drug names, uses, side effects, and more, or a potential disease diagnosis."
|
255 |
+
]
|
256 |
+
for i, step in enumerate(steps, 1):
|
257 |
+
st.markdown(f"{i}. {step}")
|
258 |
+
|
259 |
+
st.markdown("## Key Features")
|
260 |
+
key_features = [
|
261 |
+
"**AI-Powered:** Leverages advanced AI models for accurate analysis and diagnosis.",
|
262 |
+
"**User-Friendly:** Simple and intuitive interface for easy navigation and interaction.",
|
263 |
+
"**Secure:** Your data is protected and handled with confidentiality."
|
264 |
+
]
|
265 |
+
for feature in key_features:
|
266 |
+
st.markdown(f"- {feature}")
|
267 |
+
|
268 |
+
st.markdown("Please use the sidebar to navigate to different features.")
|
269 |
+
|
270 |
+
elif page == "AI Chatbot Diagnosis":
|
271 |
+
st.write("Enter your symptoms separated by commas:")
|
272 |
+
symptoms_input = st.text_area("Symptoms:")
|
273 |
+
col1, col2 = st.columns(2)
|
274 |
+
with col1:
|
275 |
+
if st.button("Diagnose with Regression Model"):
|
276 |
+
if symptoms_input:
|
277 |
+
# --- Pipeline 1 Implementation ---
|
278 |
+
# 1. Symptom Input (already done with st.text_area)
|
279 |
+
# 2. Regression Prediction
|
280 |
+
regression_prediction = predict_disease(symptoms_input)
|
281 |
+
|
282 |
+
if regression_prediction is not None:
|
283 |
+
st.write("## Logistic Regression Prediction:")
|
284 |
+
st.write(regression_prediction)
|
285 |
+
|
286 |
+
st.write("## Precautions:")
|
287 |
+
precautions_names = precaution(regression_prediction)
|
288 |
+
st.write(precautions_names)
|
289 |
+
|
290 |
+
st.write("## Occurrence:")
|
291 |
+
occurance_name = occurance(regression_prediction)
|
292 |
+
st.write(occurance_name)
|
293 |
+
|
294 |
+
else:
|
295 |
+
st.write("Please enter your symptoms.")
|
296 |
+
|
297 |
+
with col2:
|
298 |
+
if st.button("Diagnose with LLM"):
|
299 |
+
if symptoms_input:
|
300 |
+
# --- Pipeline 2 Implementation (LLM Only) ---
|
301 |
+
prompt = f"""The user is experiencing the following symptoms: {symptoms_input}.
|
302 |
+
Based on these symptoms, provide a detailed explanation of possible conditions, including
|
303 |
+
potential causes, common symptoms, and general treatment approaches. Also, suggest when
|
304 |
+
a patient should consult a doctor."""
|
305 |
+
|
306 |
+
llm_response = get_ai71_response(prompt)
|
307 |
+
|
308 |
+
st.write("## LLM Diagnosis:")
|
309 |
+
st.write(llm_response)
|
310 |
+
else:
|
311 |
+
st.write("Please enter your symptoms.")
|
312 |
+
|
313 |
+
elif page == "Drug Identification":
|
314 |
+
st.write("Upload a prescription image for drug identification.")
|
315 |
+
uploaded_file = st.file_uploader("Upload prescription", type=["png", "jpg", "jpeg"])
|
316 |
+
|
317 |
+
if uploaded_file is not None:
|
318 |
+
# Display the uploaded image
|
319 |
+
image = Image.open(uploaded_file)
|
320 |
+
st.image(image, caption="Uploaded Prescription", use_column_width=True)
|
321 |
+
|
322 |
+
if st.button("Process Prescription"):
|
323 |
+
# Save the image to a temporary file
|
324 |
+
temp_image_path = "temp_image.jpg"
|
325 |
+
image.save(temp_image_path)
|
326 |
+
|
327 |
+
# Preprocess the image
|
328 |
+
preprocessed_image = preprocess_image(temp_image_path)
|
329 |
+
|
330 |
+
# Perform inference
|
331 |
+
result_doch1 = CLIENT.infer(preprocessed_image, model_id="doctor-s-handwriting/1")
|
332 |
+
|
333 |
+
# Extract labels and detections
|
334 |
+
labels = [item["class"] for item in result_doch1["predictions"]]
|
335 |
+
detections = sv.Detections.from_inference(result_doch1)
|
336 |
+
|
337 |
+
# Sort detections and labels
|
338 |
+
sorted_indices = sorted(range(len(detections)), key=lambda i: get_x1(detections[i]))
|
339 |
+
sorted_detections = [detections[i] for i in sorted_indices]
|
340 |
+
sorted_labels = [labels[i] for i in sorted_indices]
|
341 |
+
|
342 |
+
# Convert list to string
|
343 |
+
resulting_string = ''.join(sorted_labels)
|
344 |
+
|
345 |
+
# Display results
|
346 |
+
st.subheader("Processed Prescription")
|
347 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
|
348 |
+
|
349 |
+
# Plot bounding boxes
|
350 |
+
image_with_boxes = preprocessed_image.copy()
|
351 |
+
for detection in sorted_detections:
|
352 |
+
x1, y1, x2, y2 = detection.xyxy[0]
|
353 |
+
cv2.rectangle(image_with_boxes, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2)
|
354 |
+
ax1.imshow(cv2.cvtColor(image_with_boxes, cv2.COLOR_BGR2RGB))
|
355 |
+
ax1.set_title("Bounding Boxes")
|
356 |
+
ax1.axis('off')
|
357 |
+
|
358 |
+
# Plot labels
|
359 |
+
image_with_labels = preprocessed_image.copy()
|
360 |
+
for i, detection in enumerate(sorted_detections):
|
361 |
+
x1, y1, x2, y2 = detection.xyxy[0]
|
362 |
+
label = sorted_labels[i]
|
363 |
+
cv2.putText(image_with_labels, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
364 |
+
ax2.imshow(cv2.cvtColor(image_with_labels, cv2.COLOR_BGR2RGB))
|
365 |
+
ax2.set_title("Labels")
|
366 |
+
ax2.axis('off')
|
367 |
+
|
368 |
+
st.pyplot(fig)
|
369 |
+
|
370 |
+
st.write("Extracted Text from Prescription:", resulting_string)
|
371 |
+
|
372 |
+
# Prepare prompt for LLM
|
373 |
+
prompt = f"""Analyze the following prescription text:
|
374 |
+
{resulting_string}
|
375 |
+
|
376 |
+
Please provide:
|
377 |
+
1. Identified drug name(s)
|
378 |
+
2. Full name of each identified drug
|
379 |
+
3. Primary uses of each drug
|
380 |
+
4. Common side effects
|
381 |
+
5. Recommended dosage (if identifiable from the text)
|
382 |
+
6. Any warnings or precautions
|
383 |
+
7. Potential interactions with other medications (if multiple drugs are identified)
|
384 |
+
8. Any additional relevant information for the patient
|
385 |
+
|
386 |
+
If any part of the prescription is unclear or seems incomplete, please mention that and provide information about possible interpretations or matches. Always emphasize the importance of consulting a healthcare professional for accurate interpretation and advice."""
|
387 |
+
|
388 |
+
# Get LLM response
|
389 |
+
llm_response = get_ai71_response(prompt)
|
390 |
+
|
391 |
+
st.subheader("AI Analysis of the Prescription")
|
392 |
+
st.write(llm_response)
|
393 |
+
|
394 |
+
# Remove the temporary image file
|
395 |
+
os.remove(temp_image_path)
|
396 |
+
|
397 |
+
else:
|
398 |
+
st.info("Please upload a prescription image to proceed.")
|
399 |
+
|
400 |
+
elif page == "Disease Detection":
|
401 |
+
st.write("Upload a chest X-ray image for disease detection.")
|
402 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
403 |
+
|
404 |
+
if uploaded_image is not None and st.session_state.disease_model is not None:
|
405 |
+
# Display the image
|
406 |
+
img_opened = Image.open(uploaded_image).convert('RGB')
|
407 |
+
image_pred = np.array(img_opened)
|
408 |
+
image_pred = cv2.resize(image_pred, (150, 150))
|
409 |
+
|
410 |
+
# Convert the image to a numpy array
|
411 |
+
image_pred = np.array(image_pred)
|
412 |
+
|
413 |
+
# Rescale the image (if the model was trained with rescaling)
|
414 |
+
image_pred = image_pred / 255.0
|
415 |
+
|
416 |
+
# Add an extra dimension to match the input shape (1, 150, 150, 3)
|
417 |
+
image_pred = np.expand_dims(image_pred, axis=0)
|
418 |
+
|
419 |
+
# Predict using the model
|
420 |
+
prediction = st.session_state.disease_model.predict(image_pred)
|
421 |
+
|
422 |
+
# Get the predicted class
|
423 |
+
predicted_ = np.argmax(prediction)
|
424 |
+
|
425 |
+
# Decode the prediction
|
426 |
+
if predicted_ == 0:
|
427 |
+
predicted_class = "Covid"
|
428 |
+
elif predicted_ == 1:
|
429 |
+
predicted_class = "Normal Chest X-ray"
|
430 |
+
else:
|
431 |
+
predicted_class = "Pneumonia"
|
432 |
+
|
433 |
+
st.image(image_pred, caption='Input image by user', use_column_width=True)
|
434 |
+
st.write("Prediction Classes for different types:")
|
435 |
+
st.write("COVID: 0")
|
436 |
+
st.write("Normal Chest X-ray: 1")
|
437 |
+
st.write("Pneumonia: 2")
|
438 |
+
st.write("\n")
|
439 |
+
st.write("DETECTED DISEASE DISPLAY")
|
440 |
+
st.write(f"Predicted Class : {predicted_}")
|
441 |
+
st.write(predicted_class)
|
442 |
+
|
443 |
+
# Analyze X-ray results with LLM
|
444 |
+
analyze_xray_with_llm(predicted_class)
|
445 |
+
else:
|
446 |
+
st.write("Please upload an image file or ensure the disease model is loaded.")
|
447 |
+
|
448 |
+
elif page == "Outbreak Alert":
|
449 |
+
st.markdown("## **Disease Outbreak News (from WHO)**")
|
450 |
+
|
451 |
+
# Fetch WHO news page
|
452 |
+
url = "https://www.who.int/news-room/events"
|
453 |
+
response = requests.get(url)
|
454 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
455 |
+
|
456 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
457 |
+
|
458 |
+
# Find news articles (adjust selectors if WHO website changes)
|
459 |
+
articles = soup.find_all('div', class_='list-view--item')
|
460 |
+
|
461 |
+
for article in articles[:5]: # Display the top 5 news articles
|
462 |
+
title_element = article.find('a', class_='link-container')
|
463 |
+
if title_element:
|
464 |
+
title = title_element.text.strip()
|
465 |
+
link = title_element['href']
|
466 |
+
date_element = article.find('span', class_='date')
|
467 |
+
date = date_element.text.strip() if date_element else "Date not found"
|
468 |
+
|
469 |
+
# Format date
|
470 |
+
date_parts = date.split()
|
471 |
+
if len(date_parts) >= 3:
|
472 |
+
try:
|
473 |
+
formatted_date = datetime.strptime(date, "%d %B %Y").strftime("%Y-%m-%d")
|
474 |
+
except ValueError:
|
475 |
+
formatted_date = date # Keep the original date if formatting fails
|
476 |
+
else:
|
477 |
+
formatted_date = date
|
478 |
+
|
479 |
+
# Display news item in a card-like container
|
480 |
+
with st.container():
|
481 |
+
st.markdown(f"**{formatted_date}**")
|
482 |
+
st.markdown(f"[{title}]({link})")
|
483 |
+
st.markdown("---")
|
484 |
+
else:
|
485 |
+
st.write("Could not find article details.")
|
486 |
+
|
487 |
+
# Auto-scroll to the bottom of the chat container
|
488 |
+
st.markdown(
|
489 |
+
"""
|
490 |
+
<script>
|
491 |
+
const chatContainer = document.querySelector('.st-chat-container');
|
492 |
+
if (chatContainer) {
|
493 |
+
chatContainer.scrollTop = chatContainer.scrollHeight;
|
494 |
+
}
|
495 |
+
</script>
|
496 |
+
""",
|
497 |
+
unsafe_allow_html=True,
|
498 |
+
)
|