Spaces:
Runtime error
Runtime error
File size: 2,070 Bytes
01abab4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
import torch
from PIL import Image
from diffusers.utils import load_image
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel
base_model = 'black-forest-labs/FLUX.1-dev'
controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai'
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
pipe.to("cuda")
def generate_image(prompt, control_image, controlnet_conditioning_scale, num_inference_steps, guidance_scale):
control_image = load_image(control_image) if isinstance(control_image, str) else control_image
result = pipe(
prompt,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
return result
with gr.Blocks() as demo:
gr.Markdown("# FLUX ControlNet Pipeline Interface")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")
control_image = gr.Image(source="upload", type="filepath", label="Control Image")
controlnet_conditioning_scale = gr.Slider(0.0, 1.0, value=0.6, label="ControlNet Conditioning Scale")
num_inference_steps = gr.Slider(1, 100, value=28, step=1, label="Number of Inference Steps")
guidance_scale = gr.Slider(1.0, 10.0, value=3.5, label="Guidance Scale")
generate_button = gr.Button("Generate Image")
with gr.Column():
output_image = gr.Image(label="Generated Image")
generate_button.click(
generate_image,
inputs=[prompt, control_image, controlnet_conditioning_scale, num_inference_steps, guidance_scale],
outputs=output_image
)
demo.launch() |