File size: 9,593 Bytes
49d4954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn

MODEL_ID = "Djrango/Qwen2vl-Flux"

class Qwen2Connector(nn.Module):
    def __init__(self, input_dim=3584, output_dim=4096):
        super().__init__()
        self.linear = nn.Linear(input_dim, output_dim)
    
    def forward(self, x):
        return self.linear(x)

class FluxInterface:
    def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
        self.device = device
        self.dtype = torch.bfloat16
        self.models = None
        self.MODEL_ID = "Djrango/Qwen2vl-Flux"
        
    def load_models(self):
        if self.models is not None:
            return

        # Load FLUX components
        tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
        text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder")
        text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2")
        tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
        
        # Load VAE and transformer from flux folder
        vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux")
        transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux")
        scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
        
        # Load Qwen2VL components from qwen2-vl folder
        qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl")
        
        # Load connector and t5 embedder from qwen2-vl folder
        connector = Qwen2Connector()
        connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
        connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location=self.device)
        connector.load_state_dict(connector_state)
        
        # Load T5 embedder
        self.t5_context_embedder = nn.Linear(4096, 3072)
        t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
        t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location=self.device)
        self.t5_context_embedder.load_state_dict(t5_embedder_state)
        
        # Move models to device and set dtype
        models = [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]
        for model in models:
            model.to(self.device).to(self.dtype)
            model.eval()
        
        self.models = {
            'tokenizer': tokenizer,
            'text_encoder': text_encoder,
            'text_encoder_two': text_encoder_two,
            'tokenizer_two': tokenizer_two,
            'vae': vae,
            'transformer': transformer,
            'scheduler': scheduler,
            'qwen2vl': qwen2vl,
            'connector': connector
        }
        
        # Initialize processor and pipeline
        self.qwen2vl_processor = AutoProcessor.from_pretrained(
            self.MODEL_ID, 
            subfolder="qwen2-vl",
            min_pixels=256*28*28, 
            max_pixels=256*28*28
        )
        
        self.pipeline = FluxPipeline(
            transformer=transformer,
            scheduler=scheduler,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
        ) 

    def resize_image(self, img, max_pixels=1050000):
        if not isinstance(img, Image.Image):
            img = Image.fromarray(img)
        
        width, height = img.size
        num_pixels = width * height
        
        if num_pixels > max_pixels:
            scale = math.sqrt(max_pixels / num_pixels)
            new_width = int(width * scale)
            new_height = int(height * scale)
            new_width = new_width - (new_width % 8)
            new_height = new_height - (new_height % 8)
            img = img.resize((new_width, new_height), Image.LANCZOS)
        
        return img

    def process_image(self, image):
        message = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "image": image},
                    {"type": "text", "text": "Describe this image."},
                ]
            }
        ]
        text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)

        with torch.no_grad():
            inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
            output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
            image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
            image_hidden_state = self.models['connector'](image_hidden_state)

        return image_hidden_state, image_grid_thw
    
    def compute_t5_text_embeddings(self, prompt):
        """Compute T5 embeddings for text prompt"""
        if prompt == "":
            return None
            
        text_inputs = self.models['tokenizer_two'](
            prompt,
            padding="max_length",
            max_length=256,
            truncation=True,
            return_tensors="pt"
        ).to(self.device)
        
        prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
        prompt_embeds = prompt_embeds.to(dtype=self.dtype, device=self.device)
        prompt_embeds = self.t5_context_embedder(prompt_embeds)
        
        return prompt_embeds

    def compute_text_embeddings(self, prompt=""):
        with torch.no_grad():
            text_inputs = self.models['tokenizer'](
                prompt,
                padding="max_length",
                max_length=77,
                truncation=True,
                return_tensors="pt"
            ).to(self.device)

            prompt_embeds = self.models['text_encoder'](
                text_inputs.input_ids,
                output_hidden_states=False
            )
            pooled_prompt_embeds = prompt_embeds.pooler_output.to(self.dtype)

        return pooled_prompt_embeds

    def generate(self, input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None):
        try:
            if seed is not None:
                torch.manual_seed(seed)
                
            self.load_models()
            
            # Process input image
            input_image = self.resize_image(input_image)
            qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
            pooled_prompt_embeds = self.compute_text_embeddings("")
            
            # Get T5 embeddings if prompt is provided
            t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
            
            # Generate images
            output_images = self.pipeline(
                prompt_embeds=qwen2_hidden_state.repeat(num_images, 1, 1),
                pooled_prompt_embeds=pooled_prompt_embeds,
                t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
            ).images
            
            return output_images
            
        except Exception as e:
            print(f"Error during generation: {str(e)}")
            raise gr.Error(f"Generation failed: {str(e)}")

# Initialize the interface
interface = FluxInterface()

# Create Gradio interface
with gr.Blocks(title="Qwen2vl-Flux Demo") as demo:
    gr.Markdown("""
    # 🎨 Qwen2vl-Flux Image Variation Demo
    Upload an image and get AI-generated variations. You can optionally add a text prompt to guide the generation.
    """)
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Upload Image", type="pil")
            prompt = gr.Textbox(label="Optional Text Prompt(should be as long as possible)", placeholder="Enter text prompt here (optional)")
            
            with gr.Row():
                guidance = gr.Slider(minimum=1, maximum=10, value=3.5, label="Guidance Scale")
                steps = gr.Slider(minimum=1, maximum=50, value=28, label="Number of Steps")
                num_images = gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Number of Images")
            
            seed = gr.Number(label="Random Seed (optional)", precision=0)
            submit_btn = gr.Button("Generate Variations", variant="primary")
            
        with gr.Column():
            output_gallery = gr.Gallery(label="Generated Variations", columns=2, show_label=True)
    
    # Set up the generation function
    submit_btn.click(
        fn=interface.generate,
        inputs=[input_image, prompt, guidance, steps, num_images, seed],
        outputs=output_gallery,
    )
    
    gr.Markdown("""
    ### Notes:
    - Higher guidance scale values result in outputs that more closely follow the prompt
    - More steps generally produce better quality but take longer
    - Set a seed for reproducible results
    """)

# Launch the app
if __name__ == "__main__":
    demo.launch()