multimodalart's picture
Suggested UI and ZeroGPU compatibility
77ca2e1 verified
raw
history blame
14.5 kB
import gradio as gr
import torch
import spaces
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
import math
import logging
import sys
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
from huggingface_hub import snapshot_download
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
MODEL_ID = "Djrango/Qwen2vl-Flux"
MODEL_CACHE_DIR = "model_cache"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.bfloat16
# Aspect ratio options
ASPECT_RATIOS = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"9:16": (768, 1344),
"2.4:1": (1536, 640),
"3:4": (896, 1152),
"4:3": (1152, 896),
}
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
# Download models if not present
if not os.path.exists(MODEL_CACHE_DIR):
logger.info("Starting model download...")
try:
snapshot_download(
repo_id=MODEL_ID,
local_dir=MODEL_CACHE_DIR,
local_dir_use_symlinks=False
)
logger.info("Model download completed successfully")
except Exception as e:
logger.error(f"Error downloading models: {str(e)}")
raise
# Initialize models in global context
logger.info("Starting model loading...")
# Load smaller models to GPU
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
text_encoder = CLIPTextModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")
).to(DTYPE).to(DEVICE)
text_encoder_two = T5EncoderModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")
).to(DTYPE).to(DEVICE)
tokenizer_two = T5TokenizerFast.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2")
)
# Load larger models to CPU
vae = AutoencoderKL.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/vae")
).to(DTYPE).cpu()
transformer = FluxTransformer2DModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/transformer")
).to(DTYPE).cpu()
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/scheduler"),
shift=1
)
# Load Qwen2VL to CPU
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
).to(DTYPE).cpu()
# Load connector and embedder
connector = Qwen2Connector().to(DTYPE).cpu()
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
connector_state = torch.load(connector_path, map_location='cpu')
connector_state = {k.replace('module.', ''): v.to(DTYPE) for k, v in connector_state.items()}
connector.load_state_dict(connector_state)
t5_context_embedder = nn.Linear(4096, 3072).to(DTYPE).cpu()
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
t5_embedder_state = {k: v.to(DTYPE) for k, v in t5_embedder_state.items()}
t5_context_embedder.load_state_dict(t5_embedder_state)
# Set all models to eval mode
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, t5_context_embedder]:
model.requires_grad_(False)
model.eval()
logger.info("All models loaded successfully")
# Initialize processors and pipeline
qwen2vl_processor = AutoProcessor.from_pretrained(
MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
def process_image(image):
"""Process image with Qwen2VL model"""
try:
# Move Qwen2VL models to GPU
logger.info("Moving Qwen2VL models to GPU...")
qwen2vl.to(DEVICE)
connector.to(DEVICE)
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = qwen2vl_processor.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
with torch.no_grad():
inputs = qwen2vl_processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt"
).to(DEVICE)
output_hidden_state, image_token_mask, image_grid_thw = qwen2vl(**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = connector(image_hidden_state)
result = (image_hidden_state.cpu(), image_grid_thw)
# Move models back to CPU
qwen2vl.cpu()
connector.cpu()
torch.cuda.empty_cache()
return result
except Exception as e:
logger.error(f"Error in process_image: {str(e)}")
raise
def resize_image(img, max_pixels=1050000):
if not isinstance(img, Image.Image):
img = Image.fromarray(img)
width, height = img.size
num_pixels = width * height
if num_pixels > max_pixels:
scale = math.sqrt(max_pixels / num_pixels)
new_width = int(width * scale)
new_height = int(height * scale)
new_width = new_width - (new_width % 8)
new_height = new_height - (new_height % 8)
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def compute_t5_text_embeddings(prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = tokenizer_two(
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(DEVICE)
prompt_embeds = text_encoder_two(text_inputs.input_ids)[0]
prompt_embeds = t5_context_embedder.to(DEVICE)(prompt_embeds)
t5_context_embedder.cpu()
return prompt_embeds
def compute_text_embeddings(prompt=""):
with torch.no_grad():
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt"
).to(DEVICE)
prompt_embeds = text_encoder(
text_inputs.input_ids,
output_hidden_states=False
)
pooled_prompt_embeds = prompt_embeds.pooler_output
return pooled_prompt_embeds
@spaces.GPU(duration=75)
def generate(input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1", progress=gr.Progress(track_tqdm=True)):
try:
logger.info(f"Starting generation with prompt: {prompt}")
if input_image is None:
raise ValueError("No input image provided")
if seed is not None:
torch.manual_seed(seed)
logger.info(f"Set random seed to: {seed}")
# Process image with Qwen2VL
logger.info("Processing input image with Qwen2VL...")
qwen2_hidden_state, image_grid_thw = process_image(input_image)
logger.info("Image processing completed")
# Compute text embeddings
logger.info("Computing text embeddings...")
pooled_prompt_embeds = compute_text_embeddings(prompt)
t5_prompt_embeds = compute_t5_text_embeddings(prompt)
logger.info("Text embeddings computed")
# Move Transformer and VAE to GPU
logger.info("Moving Transformer and VAE to GPU...")
transformer.to(DEVICE)
vae.to(DEVICE)
# Update pipeline models
pipeline.transformer = transformer
pipeline.vae = vae
logger.info("Models moved to GPU")
# Get dimensions
width, height = ASPECT_RATIOS[aspect_ratio]
logger.info(f"Using dimensions: {width}x{height}")
try:
logger.info("Starting image generation...")
output_images = pipeline(
prompt_embeds=qwen2_hidden_state.to(DEVICE).repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
logger.info("Image generation completed")
return output_images
except Exception as e:
raise RuntimeError(f"Error generating images: {str(e)}")
except Exception as e:
logger.error(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
max-width: 1200px;
margin: auto;
}
.header {
text-align: center;
margin: 20px 0 40px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 12px;
}
.param-row {
padding: 10px 0;
}
footer {
margin-top: 40px;
padding: 20px;
border-top: 1px solid #eee;
}
"""
) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown(
"""# 🎨 Qwen2vl-Flux Image Variation Demo
Generate creative variations of your images with optional text guidance"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Your Image",
type="pil",
height=384,
sources=["upload", "clipboard"]
)
prompt = gr.Textbox(
label="Text Prompt (Optional)",
placeholder="As Long As Possible...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
with gr.Row(elem_classes="param-row"):
guidance = gr.Slider(
minimum=1,
maximum=10,
value=3.5,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
steps = gr.Slider(
minimum=1,
maximum=50,
value=28,
step=1,
label="Sampling Steps",
info="More steps = better quality but slower"
)
with gr.Row(elem_classes="param-row"):
num_images = gr.Slider(
minimum=1,
maximum=4,
value=1,
step=1,
label="Number of Images",
info="Generate multiple variations at once"
)
seed = gr.Number(
label="Random Seed",
value=None,
precision=0,
info="Set for reproducible results"
)
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"],
value="1:1",
info="Choose aspect ratio for generated images"
)
submit_btn = gr.Button(
"🎨 Generate Variations",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
# Output Section
output_gallery = gr.Gallery(
label="Generated Variations",
columns=2,
rows=2,
height=700,
object_fit="contain",
show_label=True,
allow_preview=True,
preview=True
)
error_message = gr.Textbox(visible=False)
with gr.Row(elem_classes="footer"):
gr.Markdown("""
### Tips:
- πŸ“Έ Upload any image to get started
- πŸ’‘ Add an optional text prompt to guide the generation
- 🎯 Adjust guidance scale to control prompt influence
- βš™οΈ Increase steps for higher quality
- 🎲 Use seeds for reproducible results
""")
submit_btn.click(
fn=generate,
inputs=[
input_image,
prompt,
guidance,
steps,
num_images,
seed,
aspect_ratio
],
outputs=[output_gallery],
show_progress=True
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0", # Listen on all network interfaces
server_port=7860, # Use a specific port
share=False, # Disable public URL sharing
)