File size: 3,380 Bytes
3911a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da59864
3911a99
 
 
 
 
 
 
da59864
 
3911a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8ce530
 
 
 
 
 
 
 
 
f58ced3
a8ce530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3911a99
a8ce530
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from diffusers import DiffusionPipeline, DDIMScheduler
import torch

import gradio as gr

stable_inpiant_model_list = [
    "stabilityai/stable-diffusion-2-inpainting",
    "runwayml/stable-diffusion-inpainting"
]

stable_prompt_list = [
        "a photo of a man.",
        "a photo of a girl."
    ]

stable_negative_prompt_list = [
        "bad, ugly",
        "deformed"
    ]


def stable_diffusion_inpaint(
    dict:str,
    model_path:str,
    prompt:str,
    negative_prompt:str,
    guidance_scale:int,
    num_inference_step:int,
    ):

    image = dict["image"].convert("RGB").resize((512, 512))
    mask_image = dict["mask"].convert("RGB").resize((512, 512))
    pipe = DiffusionPipeline.from_pretrained(
        model_path,
        revision="fp16",
        torch_dtype=torch.float16,
    )
    pipe.to('cuda')
    pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    pipe.enable_xformers_memory_efficient_attention()

    output = pipe(
        prompt = prompt,
        image = image,
        mask_image=mask_image,
        negative_prompt = negative_prompt,
        num_inference_steps = num_inference_step,
        guidance_scale = guidance_scale,
    ).images

    return output[0]


def stable_diffusion_inpaint_app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                inpaint_image_file = gr.Image(
                    source='upload', 
                    tool='sketch', 
                    elem_id="image_upload", 
                    type="pil", 
                    label="Upload"
                )

                inpaint_model_id = gr.Dropdown(
                    choices=stable_inpiant_model_list, 
                    value=stable_inpiant_model_list[0], 
                    label='Inpaint Model Id'
                )

                inpaint_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_prompt_list[0], 
                    label='Prompt'
                )

                inpaint_negative_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_negative_prompt_list[0], 
                    label='Negative Prompt'
                )

                with gr.Accordion("Advanced Options", open=False):
                    inpaint_guidance_scale = gr.Slider(
                        minimum=0.1, 
                        maximum=15, 
                        step=0.1, 
                        value=7.5, 
                        label='Guidance Scale'
                    )

                    inpaint_num_inference_step = gr.Slider(
                        minimum=1, 
                        maximum=100, 
                        step=1, 
                        value=50, 
                        label='Num Inference Step'
                    )

                inpaint_predict = gr.Button(value='Generator')

            
            with gr.Column():
                output_image = gr.Gallery(label="Outputs")
            
        inpaint_predict.click(
            fn=stable_diffusion_inpaint,
            inputs=[
                inpaint_image_file,
                inpaint_model_id,
                inpaint_prompt,
                inpaint_negative_prompt,
                inpaint_guidance_scale,
                inpaint_num_inference_step,
            ],
            outputs=output_image
        )