Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import from_pretrained_keras | |
from keras_cv import models | |
from tensorflow import keras | |
keras_model_list = [ | |
"keras-dreambooth/keras_diffusion_lowpoly_world", | |
"keras-dreambooth/keras-diffusion-traditional-furniture", | |
] | |
stable_prompt_list = [ | |
"photo of lowpoly_world", | |
"photo of traditional_furniture", | |
] | |
stable_negative_prompt_list = ["bad, ugly", "deformed"] | |
keras.mixed_precision.set_global_policy("mixed_float16") | |
dreambooth_model = models.StableDiffusion( | |
img_width=512, | |
img_height=512, | |
jit_compile=True, | |
) | |
def keras_stable_diffusion( | |
model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
num_imgs_to_gen: int, | |
num_steps: int, | |
): | |
""" | |
This function is used to generate images using our fine-tuned keras dreambooth stable diffusion model. | |
Args: | |
prompt (str): The text input given by the user based on which images will be generated. | |
num_imgs_to_gen (int): The number of images to be generated using given prompt. | |
num_steps (int): The number of denoising steps | |
Returns: | |
generated_img (List): List of images that were generated using the model | |
""" | |
loaded_diffusion_model = from_pretrained_keras(model_path) | |
dreambooth_model._diffusion_model = loaded_diffusion_model | |
generated_img = dreambooth_model.text_to_image( | |
prompt, | |
negative_prompt=negative_prompt, | |
batch_size=num_imgs_to_gen, | |
num_steps=num_steps, | |
) | |
return generated_img | |
def keras_stable_diffusion_app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
keras_text2image_model_path = gr.Dropdown( | |
choices=keras_model_list, | |
value=keras_model_list[0], | |
label="Text-Image Model Id", | |
) | |
keras_text2image_prompt = gr.Textbox( | |
lines=1, value=stable_prompt_list[0], label="Prompt" | |
) | |
keras_text2image_negative_prompt = gr.Textbox( | |
lines=1, | |
value=stable_negative_prompt_list[0], | |
label="Negative Prompt", | |
) | |
keras_text2image_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
keras_text2image_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
) | |
keras_text2image_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Gallery(label="Outputs").style(grid=(1, 2)) | |
gr.Examples( | |
fn=keras_stable_diffusion, | |
inputs=[ | |
keras_text2image_model_path, | |
keras_text2image_prompt, | |
keras_text2image_negative_prompt, | |
keras_text2image_guidance_scale, | |
keras_text2image_num_inference_step, | |
], | |
outputs=[output_image], | |
examples=[ | |
[ | |
keras_model_list[0], | |
stable_prompt_list[0], | |
stable_negative_prompt_list[0], | |
7.5, | |
50, | |
512, | |
512, | |
], | |
], | |
label="Keras Stable Diffusion Example", | |
cache_examples=False, | |
) | |
keras_text2image_predict.click( | |
fn=keras_stable_diffusion, | |
inputs=[ | |
keras_text2image_model_path, | |
keras_text2image_prompt, | |
keras_text2image_negative_prompt, | |
keras_text2image_guidance_scale, | |
keras_text2image_num_inference_step, | |
], | |
outputs=output_image, | |
) | |