File size: 927 Bytes
d4952da
 
 
 
 
10321f6
d4952da
10321f6
d4952da
10321f6
d4952da
10321f6
d4952da
 
 
10321f6
d4952da
 
 
 
 
 
 
0fa16fe
 
 
 
 
 
 
d4952da
10321f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import flask
from flask import request
import os
from dotenv import load_dotenv
load_dotenv()

app = flask.Flask(__name__, template_folder="./")

from transformers import pipeline

classifier = pipeline('text-classification', model="bsenst/classify_services_model")

@app.route('/')
def index():
    return flask.render_template('index.html')

@app.route("/", methods=["POST"])
def predict():
    incoming = request.get_json()
    print(incoming)
    prediction = classifier(incoming["text"])[0]
    print(prediction)
    return prediction
@app.route("/avp", methods=["POST"])
def avp():
    incoming = request.get_json()
    print(incoming)
    # Обработка POST запроса по пути "/avp"
    # Можно добавить нужную логику для обработки данных
    return "test ok 200"
if __name__ == '__main__':
    app.run(host='0.0.0.0',  port=int(os.environ.get('PORT', 7860)))