|
import flask |
|
from flask import request |
|
import os |
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
app = flask.Flask(__name__, template_folder="./") |
|
|
|
from transformers import pipeline |
|
|
|
classifier = pipeline('text-classification', model="bsenst/classify_services_model") |
|
|
|
@app.route('/') |
|
def index(): |
|
return flask.render_template('index.html') |
|
|
|
@app.route("/", methods=["POST"]) |
|
def predict(): |
|
incoming = request.get_json() |
|
print(incoming) |
|
prediction = classifier(incoming["text"])[0] |
|
print(prediction) |
|
return prediction |
|
|
|
if __name__ == '__main__': |
|
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860))) |