Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,51 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import BertTokenizer, BertForSequenceClassification, BertModel, BertConfig
|
3 |
import torch
|
4 |
-
import
|
|
|
5 |
|
6 |
-
class MultiTaskBertModel(
|
7 |
-
def __init__(self,
|
8 |
super(MultiTaskBertModel, self).__init__()
|
9 |
-
self.bert =
|
10 |
-
self.classifier_task1 =
|
11 |
-
self.classifier_task2 =
|
12 |
-
|
13 |
-
def forward(self, input_ids, attention_mask
|
14 |
-
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask
|
15 |
pooled_output = outputs.pooler_output
|
16 |
-
|
17 |
logits_task1 = self.classifier_task1(pooled_output)
|
18 |
logits_task2 = self.classifier_task2(pooled_output)
|
19 |
-
|
20 |
return logits_task1, logits_task2
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# Сохраняем веса модели
|
27 |
-
model_path = os.path.join(save_directory, 'pytorch_model.bin')
|
28 |
-
torch.save(self.state_dict(), model_path)
|
29 |
-
|
30 |
-
# Сохраняем конфигурацию модели
|
31 |
-
config = self.bert.config
|
32 |
-
config.save_pretrained(save_directory)
|
33 |
-
|
34 |
-
@classmethod
|
35 |
-
def from_pretrained(cls, load_directory, num_labels_task1, num_labels_task2):
|
36 |
-
# Загружаем конфигурацию BERT
|
37 |
-
config = BertConfig.from_pretrained(load_directory)
|
38 |
-
|
39 |
-
# Загружаем BERT модель
|
40 |
-
bert_model = BertModel.from_pretrained(load_directory, config=config)
|
41 |
-
|
42 |
-
# Создаем экземпляр кастомной модели
|
43 |
-
model = cls(bert_model, num_labels_task1, num_labels_task2)
|
44 |
-
|
45 |
-
# Загружаем сохраненные веса
|
46 |
-
model_path = os.path.join('pytorch_model.bin')
|
47 |
-
model.load_state_dict(torch.load(model_path))
|
48 |
-
|
49 |
-
return model
|
50 |
-
|
51 |
-
model = MultiTaskBertModel.from_pretrained("DmitriySv/ticket_classifer", 28, 3)
|
52 |
-
tokenizer = BertTokenizer.from_pretrained("DmitriySv/ticket_classifer")
|
53 |
-
|
54 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
55 |
-
model = model.to(device)
|
56 |
model.eval()
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
with torch.no_grad():
|
62 |
-
outputs = model(**inputs)
|
63 |
-
print(outputs)
|
64 |
-
logits_task1, logits_task2 = model(**inputs)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
pred_task1 = torch.argmax(logits_task1, dim=1).item()
|
67 |
pred_task2 = torch.argmax(logits_task2, dim=1).item()
|
68 |
-
|
69 |
-
return {"
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
)
|
78 |
|
79 |
-
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import BertTokenizer, BertModel
|
3 |
+
import gradio as gr
|
4 |
|
5 |
+
class MultiTaskBertModel(nn.Module):
|
6 |
+
def __init__(self, num_labels_task1, num_labels_task2):
|
7 |
super(MultiTaskBertModel, self).__init__()
|
8 |
+
self.bert = BertModel.from_pretrained('bert-base-uncased')
|
9 |
+
self.classifier_task1 = nn.Linear(self.bert.config.hidden_size, num_labels_task1)
|
10 |
+
self.classifier_task2 = nn.Linear(self.bert.config.hidden_size, num_labels_task2)
|
11 |
+
|
12 |
+
def forward(self, input_ids, attention_mask):
|
13 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
14 |
pooled_output = outputs.pooler_output
|
|
|
15 |
logits_task1 = self.classifier_task1(pooled_output)
|
16 |
logits_task2 = self.classifier_task2(pooled_output)
|
|
|
17 |
return logits_task1, logits_task2
|
18 |
|
19 |
+
# Загрузка сохраненной модели
|
20 |
+
model = MultiTaskBertModel(num_labels_task1=3, num_labels_task2=4)
|
21 |
+
model.load_state_dict(torch.load("ticket_classifier.pth"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
model.eval()
|
23 |
|
24 |
+
# Загрузка токенизатора
|
25 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Функция для предсказания
|
28 |
+
def predict(text):
|
29 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
30 |
+
input_ids = inputs["input_ids"]
|
31 |
+
attention_mask = inputs["attention_mask"]
|
32 |
+
|
33 |
+
# Получаем предсказания для двух задач
|
34 |
+
logits_task1, logits_task2 = model(input_ids=input_ids, attention_mask=attention_mask)
|
35 |
+
|
36 |
+
# Преобразование логитов в предсказания классов
|
37 |
pred_task1 = torch.argmax(logits_task1, dim=1).item()
|
38 |
pred_task2 = torch.argmax(logits_task2, dim=1).item()
|
39 |
+
|
40 |
+
return {"Task 1 Prediction": pred_task1, "Task 2 Prediction": pred_task2}
|
41 |
+
|
42 |
+
# Создание интерфейса с Gradio
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=predict,
|
45 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Введите текст для анализа..."),
|
46 |
+
outputs="json",
|
47 |
+
title="Multi-Task BERT Model",
|
48 |
+
description="Модель BERT для одновременного решения двух задач: тональность текста и тема.",
|
49 |
)
|
50 |
|
51 |
+
iface.launch()
|