Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
model = BertForSequenceClassification.from_pretrained("DmitriySv/ticket_classifier")
|
| 6 |
+
tokenizer = BertTokenizer.from_pretrained("DmitriySv/ticket_classifier")
|
| 7 |
+
|
| 8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
+
model = model.to(device)
|
| 10 |
+
model.eval()
|
| 11 |
+
|
| 12 |
+
def classify(text):
|
| 13 |
+
inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
| 14 |
+
|
| 15 |
+
with torch.no_grad():
|
| 16 |
+
logits_task1, logits_task2 = model(**inputs)
|
| 17 |
+
|
| 18 |
+
pred_task1 = torch.argmax(logits_task1, dim=1).item()
|
| 19 |
+
pred_task2 = torch.argmax(logits_task2, dim=1).item()
|
| 20 |
+
|
| 21 |
+
return {"Тип": pred_task1, "Приоритет": pred_task2}
|
| 22 |
+
|
| 23 |
+
interface = gr.Interface(
|
| 24 |
+
fn=classify,
|
| 25 |
+
inputs=gr.Textbox(label="Введите запрос для классификации"),
|
| 26 |
+
outputs=[gr.Label(label="Тип"), gr.Label(label="Приоритет")],
|
| 27 |
+
title="Классификация запроса по типу и приоритету",
|
| 28 |
+
description="Классификация запроса по типу и приоритету."
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
interface.launch()
|