import streamlit as st import requests import os API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo" headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"} def query(file): data = file.read() response = requests.post(API_URL, headers=headers, data=data) return response.json() st.title("Speech Recognition with Whisper") uploaded_file = st.file_uploader("Choose an audio file", type=['wav', 'mp3', 'flac']) if uploaded_file is not None: st.audio(uploaded_file, format='audio/wav') if st.button('Transcribe'): with st.spinner('Transcribing...'): result = query(uploaded_file) if 'text' in result: st.success("Transcription completed!") st.write("Transcribed text:") st.write(result['text']) else: st.error("An error occurred during transcription.") st.write("Error details:") st.write(result) st.markdown("---") st.write("Note: This app uses the Whisper API from Hugging Face.")