File size: 11,314 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright (c) 2024, Sanghun Cho, Tri Dao.

import pickle
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange, repeat
from flash_attn.layers.rotary import apply_rotary_emb

from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward
from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined

from flash_attn import flash_attn_qkvpacked_func, flash_attn_func

try:
    import xformers.ops as xops
except ImportError:
    xops = None


def generate_cos_sin(seqlen, rotary_dim, device, dtype):
    assert rotary_dim % 2 == 0
    angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
    cos = torch.cos(angle).to(dtype=dtype)
    sin = torch.sin(angle).to(dtype=dtype)
    return cos, sin


def flash_rotary(q, k, v, cos, sin, causal=False):
    # corrected by @tridao comments
    q = apply_rotary_emb(
        q, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True
    )
    k = apply_rotary_emb(
        k, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True
    )

    return flash_attn_func(q, k, v, causal=causal)


def attn_bias_from_alibi_slopes(

    slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False

):
    batch, nheads = slopes.shape
    device = slopes.device
    slopes = rearrange(slopes, "b h -> b h 1 1")
    if causal:
        return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
    else:
        row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
        col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
        sk = (
            seqlen_k
            if key_padding_mask is None
            else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        sq = (
            seqlen_q
            if query_padding_mask is None
            else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        relative_pos = torch.abs(row_idx + sk - sq - col_idx)
        return -slopes * relative_pos.to(dtype=slopes.dtype)


def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"):
    assert mode in ["fwd", "bwd", "fwd_bwd"]
    f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
    return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)


def efficiency(flop, time):
    return (flop / time / 10**12) if not math.isnan(time) else 0.0


def attention_pytorch(q, k, v, dropout_p=0.0, causal=True, attn_bias=None):
    """

    Arguments:

        q, k, v: (batch_size, seqlen, nheads, head_dim)

        dropout_p: float

        attn_bias: (batch_size, nheads, seqlen, seqlen) or (1, nheads, seqlen, seqlen)

    Output:

        output: (batch_size, seqlen, nheads, head_dim)

    """
    batch_size, seqlen, nheads, d = q.shape
    q = rearrange(q, 'b t h d -> (b h) t d')
    k = rearrange(k, 'b s h d -> (b h) d s')
    softmax_scale = 1.0 / math.sqrt(d)
    # Preallocate attn_weights for `baddbmm`
    if attn_bias is not None:
        scores = rearrange(attn_bias, 'b h t s -> (b h) t s')
    else:
        scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=q.dtype, device=q.device)
    scores = rearrange(torch.baddbmm(scores, q, k, beta=1.0, alpha=softmax_scale),
                       '(b h) t s -> b h t s', h=nheads)
    if causal:
        # "triu_tril_cuda_template" not implemented for 'BFloat16'
        # So we have to construct the mask in float
        causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
        # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
        scores = scores + causal_mask.to(dtype=scores.dtype)
    attention = torch.softmax(scores, dim=-1)
    attention_drop = F.dropout(attention, dropout_p)
    output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    return output.to(dtype=q.dtype)


def time_fwd_bwd(func, *args, **kwargs):
    time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
    return time_f[1].mean, time_b[1].mean


repeats = 30
device = 'cuda'
dtype = torch.float16

bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
causal_vals = [False, True]
headdim_vals = [64, 128]
dim = 2048
dropout_p = 0.0

methods = (["fa2_alibi", "torch"]
           + (["xformers"] if xops is not None else [])
           + ["sdpa"]
           + ["fa2_baseline"]
           + ["fa2_rotary"])

time_f = {}
time_b = {}
time_f_b = {}
speed_f = {}
speed_b = {}
speed_f_b = {}
for causal in causal_vals:
    for headdim in headdim_vals:
        for batch_size, seqlen in bs_seqlen_vals:
            config = (causal, headdim, batch_size, seqlen)
            nheads = dim // headdim
            q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
                                    requires_grad=True) for _ in range(3)]
            # alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
            alibi_slopes = torch.rand(1, nheads, device=device, dtype=torch.float32) * 0.3
            attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal).to(dtype)
            attn_bias = repeat(attn_bias, "1 ... -> b ...", b=batch_size)
            f, b = time_fwd_bwd(
                flash_attn_func,
                q, k, v,
                dropout_p,
                causal=causal,
                # alibi_slopes=alibi_slopes,
                alibi_slopes=None,
                repeats=repeats,
                verbose=False
            )
            time_f[config, "fa2_baseline"] = f
            time_b[config, "fa2_baseline"] = b

            q = q.detach().requires_grad_(True)
            k = k.detach().requires_grad_(True)
            v = v.detach().requires_grad_(True)
            f, b = time_fwd_bwd(
                flash_attn_func,
                q, k, v,
                dropout_p,
                causal=causal,
                alibi_slopes=rearrange(alibi_slopes, "1 h -> h"),
                # alibi_slopes=None,
                repeats=repeats,
                verbose=False
            )
            time_f[config, "fa2_alibi"] = f
            time_b[config, "fa2_alibi"] = b

            try:
                q = q.detach().requires_grad_(True)
                k = k.detach().requires_grad_(True)
                v = v.detach().requires_grad_(True)
                f, b = time_fwd_bwd(
                    attention_pytorch,
                    q, k, v,
                    dropout_p,
                    causal=causal,
                    attn_bias=attn_bias,
                    repeats=repeats,
                    verbose=False
                )
            except:  # Skip if OOM
                f, b = float('nan'), float('nan')
            time_f[config, "torch"] = f
            time_b[config, "torch"] = b

            # F.sdpa doesn't currently (torch 2.1) dispatch to flash-attn but just to be safe
            with torch.backends.cuda.sdp_kernel(enable_flash=False):
                q_pt = q.detach().requires_grad_(True).transpose(1, 2)
                k_pt = k.detach().requires_grad_(True).transpose(1, 2)
                v_pt = v.detach().requires_grad_(True).transpose(1, 2)
                f, b = time_fwd_bwd(
                    F.scaled_dot_product_attention,
                    q_pt, k_pt, v_pt,
                    attn_mask=attn_bias,
                    dropout_p=dropout_p,
                    is_causal=causal,
                    repeats=repeats,
                    verbose=False
                )
                time_f[config, "sdpa"] = f
                time_b[config, "sdpa"] = b

            if xops is not None:
                q = q.detach().requires_grad_(True)
                k = k.detach().requires_grad_(True)
                v = v.detach().requires_grad_(True)
                if causal:
                    attn_bias_xops = xops.LowerTriangularMask().add_bias(attn_bias.expand(-1, -1, seqlen, -1).to(dtype=q.dtype))
                    # NotImplementedError: No operator found for `memory_efficient_attention_backward` with inputs:
                    # `[email protected]` is not supported because:
                    #     attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'>
                    # `cutlassB` is not supported because:
                    #     attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'>
                    attn_bias_xops = attn_bias_xops.materialize((batch_size, nheads, seqlen, seqlen), dtype=q.dtype, device=device)
                else:
                    attn_bias_xops = attn_bias.to(dtype=q.dtype)
                f, b = time_fwd_bwd(
                    xops.memory_efficient_attention,
                    q, k, v,
                    attn_bias_xops,
                    dropout_p,
                    repeats=repeats,
                    verbose=False
                )
                time_f[config, "xformers"] = f
                time_b[config, "xformers"] = b

            q = q.detach().requires_grad_(True)
            k = k.detach().requires_grad_(True)
            v = v.detach().requires_grad_(True)
            cos, sin = generate_cos_sin(seqlen, headdim, device, dtype)
            f, b = time_fwd_bwd(
                flash_rotary,
                q, k, v,
                cos, sin,
                causal,
                repeats=repeats,
                verbose=False
            )
            time_f[config, "fa2_rotary"] = f
            time_b[config, "fa2_rotary"] = b

            print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###")
            csv_output = ""
            csv_output += f"{causal},{headdim},{batch_size},{seqlen},"
            for method in methods:
                time_f_b[config, method] = time_f[config, method] + time_b[config, method]
                speed_f[config, method] = efficiency(
                    flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"),
                    time_f[config, method]
                )
                speed_b[config, method] = efficiency(
                    flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"),
                    time_b[config, method]
                )
                speed_f_b[config, method] = efficiency(
                    flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"),
                    time_f_b[config, method]
                )
                print(
                    f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, "
                    f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, "
                    f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s"
                )
                csv_output += f"{speed_f[config, method]:.2f},{speed_b[config, method]:.2f},{speed_f_b[config, method]:.2f},"
            print(csv_output)