Spaces:
Sleeping
Sleeping
File size: 11,314 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# Copyright (c) 2024, Sanghun Cho, Tri Dao.
import pickle
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from flash_attn.layers.rotary import apply_rotary_emb
from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward
from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
try:
import xformers.ops as xops
except ImportError:
xops = None
def generate_cos_sin(seqlen, rotary_dim, device, dtype):
assert rotary_dim % 2 == 0
angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
cos = torch.cos(angle).to(dtype=dtype)
sin = torch.sin(angle).to(dtype=dtype)
return cos, sin
def flash_rotary(q, k, v, cos, sin, causal=False):
# corrected by @tridao comments
q = apply_rotary_emb(
q, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True
)
k = apply_rotary_emb(
k, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True
)
return flash_attn_func(q, k, v, causal=causal)
def attn_bias_from_alibi_slopes(
slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False
):
batch, nheads = slopes.shape
device = slopes.device
slopes = rearrange(slopes, "b h -> b h 1 1")
if causal:
return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
else:
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
sk = (
seqlen_k
if key_padding_mask is None
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
)
sq = (
seqlen_q
if query_padding_mask is None
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
)
relative_pos = torch.abs(row_idx + sk - sq - col_idx)
return -slopes * relative_pos.to(dtype=slopes.dtype)
def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"):
assert mode in ["fwd", "bwd", "fwd_bwd"]
f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)
def efficiency(flop, time):
return (flop / time / 10**12) if not math.isnan(time) else 0.0
def attention_pytorch(q, k, v, dropout_p=0.0, causal=True, attn_bias=None):
"""
Arguments:
q, k, v: (batch_size, seqlen, nheads, head_dim)
dropout_p: float
attn_bias: (batch_size, nheads, seqlen, seqlen) or (1, nheads, seqlen, seqlen)
Output:
output: (batch_size, seqlen, nheads, head_dim)
"""
batch_size, seqlen, nheads, d = q.shape
q = rearrange(q, 'b t h d -> (b h) t d')
k = rearrange(k, 'b s h d -> (b h) d s')
softmax_scale = 1.0 / math.sqrt(d)
# Preallocate attn_weights for `baddbmm`
if attn_bias is not None:
scores = rearrange(attn_bias, 'b h t s -> (b h) t s')
else:
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=q.dtype, device=q.device)
scores = rearrange(torch.baddbmm(scores, q, k, beta=1.0, alpha=softmax_scale),
'(b h) t s -> b h t s', h=nheads)
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1)
attention_drop = F.dropout(attention, dropout_p)
output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
return output.to(dtype=q.dtype)
def time_fwd_bwd(func, *args, **kwargs):
time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
return time_f[1].mean, time_b[1].mean
repeats = 30
device = 'cuda'
dtype = torch.float16
bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
causal_vals = [False, True]
headdim_vals = [64, 128]
dim = 2048
dropout_p = 0.0
methods = (["fa2_alibi", "torch"]
+ (["xformers"] if xops is not None else [])
+ ["sdpa"]
+ ["fa2_baseline"]
+ ["fa2_rotary"])
time_f = {}
time_b = {}
time_f_b = {}
speed_f = {}
speed_b = {}
speed_f_b = {}
for causal in causal_vals:
for headdim in headdim_vals:
for batch_size, seqlen in bs_seqlen_vals:
config = (causal, headdim, batch_size, seqlen)
nheads = dim // headdim
q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
requires_grad=True) for _ in range(3)]
# alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
alibi_slopes = torch.rand(1, nheads, device=device, dtype=torch.float32) * 0.3
attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal).to(dtype)
attn_bias = repeat(attn_bias, "1 ... -> b ...", b=batch_size)
f, b = time_fwd_bwd(
flash_attn_func,
q, k, v,
dropout_p,
causal=causal,
# alibi_slopes=alibi_slopes,
alibi_slopes=None,
repeats=repeats,
verbose=False
)
time_f[config, "fa2_baseline"] = f
time_b[config, "fa2_baseline"] = b
q = q.detach().requires_grad_(True)
k = k.detach().requires_grad_(True)
v = v.detach().requires_grad_(True)
f, b = time_fwd_bwd(
flash_attn_func,
q, k, v,
dropout_p,
causal=causal,
alibi_slopes=rearrange(alibi_slopes, "1 h -> h"),
# alibi_slopes=None,
repeats=repeats,
verbose=False
)
time_f[config, "fa2_alibi"] = f
time_b[config, "fa2_alibi"] = b
try:
q = q.detach().requires_grad_(True)
k = k.detach().requires_grad_(True)
v = v.detach().requires_grad_(True)
f, b = time_fwd_bwd(
attention_pytorch,
q, k, v,
dropout_p,
causal=causal,
attn_bias=attn_bias,
repeats=repeats,
verbose=False
)
except: # Skip if OOM
f, b = float('nan'), float('nan')
time_f[config, "torch"] = f
time_b[config, "torch"] = b
# F.sdpa doesn't currently (torch 2.1) dispatch to flash-attn but just to be safe
with torch.backends.cuda.sdp_kernel(enable_flash=False):
q_pt = q.detach().requires_grad_(True).transpose(1, 2)
k_pt = k.detach().requires_grad_(True).transpose(1, 2)
v_pt = v.detach().requires_grad_(True).transpose(1, 2)
f, b = time_fwd_bwd(
F.scaled_dot_product_attention,
q_pt, k_pt, v_pt,
attn_mask=attn_bias,
dropout_p=dropout_p,
is_causal=causal,
repeats=repeats,
verbose=False
)
time_f[config, "sdpa"] = f
time_b[config, "sdpa"] = b
if xops is not None:
q = q.detach().requires_grad_(True)
k = k.detach().requires_grad_(True)
v = v.detach().requires_grad_(True)
if causal:
attn_bias_xops = xops.LowerTriangularMask().add_bias(attn_bias.expand(-1, -1, seqlen, -1).to(dtype=q.dtype))
# NotImplementedError: No operator found for `memory_efficient_attention_backward` with inputs:
# `[email protected]` is not supported because:
# attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'>
# `cutlassB` is not supported because:
# attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'>
attn_bias_xops = attn_bias_xops.materialize((batch_size, nheads, seqlen, seqlen), dtype=q.dtype, device=device)
else:
attn_bias_xops = attn_bias.to(dtype=q.dtype)
f, b = time_fwd_bwd(
xops.memory_efficient_attention,
q, k, v,
attn_bias_xops,
dropout_p,
repeats=repeats,
verbose=False
)
time_f[config, "xformers"] = f
time_b[config, "xformers"] = b
q = q.detach().requires_grad_(True)
k = k.detach().requires_grad_(True)
v = v.detach().requires_grad_(True)
cos, sin = generate_cos_sin(seqlen, headdim, device, dtype)
f, b = time_fwd_bwd(
flash_rotary,
q, k, v,
cos, sin,
causal,
repeats=repeats,
verbose=False
)
time_f[config, "fa2_rotary"] = f
time_b[config, "fa2_rotary"] = b
print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###")
csv_output = ""
csv_output += f"{causal},{headdim},{batch_size},{seqlen},"
for method in methods:
time_f_b[config, method] = time_f[config, method] + time_b[config, method]
speed_f[config, method] = efficiency(
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"),
time_f[config, method]
)
speed_b[config, method] = efficiency(
flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"),
time_b[config, method]
)
speed_f_b[config, method] = efficiency(
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"),
time_f_b[config, method]
)
print(
f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, "
f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, "
f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s"
)
csv_output += f"{speed_f[config, method]:.2f},{speed_b[config, method]:.2f},{speed_f_b[config, method]:.2f},"
print(csv_output)
|