File size: 6,176 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) 2023, Tri Dao.

import math
import re
from collections import OrderedDict

import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import FalconConfig, GPT2Config


def remap_state_dict_hf_falcon(state_dict, config):
    def key_mapping_layers(key):
        return re.sub(r"^transformer.h.", "transformer.layers.", key)

    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
    # Word embedding
    def key_mapping_emb(key):
        return re.sub(
            r"^transformer.word_embeddings.", "transformer.embeddings.word_embeddings.", key
        )

    state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
    if getattr(config, "tie_word_embeddings"):
        state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
    else:
        output_embeddings = state_dict.pop("lm_head.weight")
        # It's possible that vocab_size is padded to be a multiple of 8, for example.
        state_dict["lm_head.weight"] = F.pad(
            output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
        )
        output_embeddings_bias = state_dict.pop("lm_head.bias")
        state_dict["lm_head.bias"] = F.pad(
            output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0])
        )

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(
            r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key
        )
        key = re.sub(
            r"^transformer.layers.(\d+).post_attention_layernorm.",
            r"transformer.layers.\1.norm2.",
            key,
        )
        key = re.sub(r"^transformer.layers.(\d+).ln_attn.", r"transformer.layers.\1.norm1.", key)
        key = re.sub(r"^transformer.layers.(\d+).ln_mlp.", r"transformer.layers.\1.norm2.", key)
        return key

    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    def key_mapping_mlp(key):
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_h_to_4h.", r"transformer.layers.\1.mlp.fc1.", key
        )
        key = re.sub(
            r"^transformer.layers.(\d+).mlp.dense_4h_to_h.", r"transformer.layers.\1.mlp.fc2.", key
        )
        return key

    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    def key_mapping_attn(key):
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.query_key_value.",
            r"transformer.layers.\1.mixer.Wqkv.",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attention.dense.",
            r"transformer.layers.\1.mixer.out_proj.",
            key,
        )
        return key

    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    n_head = config.n_head
    n_head_kv = getattr(config, "n_head_kv", 1)
    headdim = config.hidden_size // n_head
    for l in range(config.n_layer):
        # The weights are stored in a different layout compared to our implementation
        Wqkv = rearrange(
            state_dict.pop(f"transformer.layers.{l}.mixer.Wqkv.weight"),
            "(group ratio headdim) ... -> group ratio headdim ...",
            ratio=n_head // n_head_kv + 2,
            headdim=headdim,
        )
        Wq = rearrange(Wqkv[:, :-2], "group ratio headdim ... -> (group ratio headdim) ...")
        Wk = rearrange(Wqkv[:, [-2]], "group ratio headdim ... -> (group ratio headdim) ...")
        Wv = rearrange(Wqkv[:, [-1]], "group ratio headdim ... -> (group ratio headdim) ...")
        state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)

    return state_dict


def falcon_config_to_gpt2_config(falcon_config: FalconConfig) -> GPT2Config:
    # The 40b config uses "n_head_kv" instead of "num_kv_heads"
    n_head_kv = getattr(
        falcon_config,
        "n_head_kv",
        1 if getattr(falcon_config, "multi_query", False) else falcon_config.n_head,
    )
    # HACK: the 40b config has 2 LN per layer instead of 1, but that's not reflected in the config.
    # So we have to infer it from the number of heads in the key/value block
    parallel_block_tied_norm = n_head_kv == 1
    return GPT2Config(
        vocab_size=falcon_config.vocab_size,
        n_positions=0,  # No absolute position embedding
        n_embd=falcon_config.hidden_size,
        n_layer=falcon_config.n_layer,
        n_head=falcon_config.n_head,
        n_inner=falcon_config.hidden_size * 4,
        activation_function="gelu",
        resid_pdrop=falcon_config.hidden_dropout,
        embd_pdrop=0.0,  # There doesn't seem to be any embedding dropout
        attn_pdrop=falcon_config.attention_dropout,
        layer_norm_epsilon=falcon_config.layer_norm_epsilon,
        initializer_range=falcon_config.initializer_range,
        bos_token_id=falcon_config.bos_token_id,
        eos_token_id=falcon_config.eos_token_id,
        # These are new arguments not in the original GPT2Config
        parallel_block=falcon_config.parallel_attn,
        n_head_kv=n_head_kv,
        parallel_block_tied_norm=parallel_block_tied_norm,
        rotary_emb_fraction=1.0,
        rotary_emb_interleaved=False,
        tie_word_embeddings=True,
        qkv_proj_bias=falcon_config.bias,
        out_proj_bias=falcon_config.bias,
        mlp_fc1_bias=falcon_config.bias,
        mlp_fc2_bias=falcon_config.bias,
        lm_head_bias=False,
    )