File size: 29,320 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
![ALT](./media/images/gemm-hierarchy-with-epilogue-no-labels.png "Complete CUDA GEMM decomposition")

# CUTLASS 3.5

_CUTLASS 3.5 - April 2024_

CUTLASS is a collection of CUDA C++ template abstractions for implementing
high-performance matrix-matrix multiplication (GEMM) and related computations at all levels 
and scales within CUDA. It incorporates strategies for hierarchical decomposition and 
data movement similar to those used to implement cuBLAS and cuDNN.  CUTLASS decomposes 
these "moving parts" into reusable, modular software components abstracted by C++ template 
classes.  Primitives for different levels of a conceptual parallelization hierarchy
can be specialized and tuned via custom tiling sizes, data types,
and other algorithmic policy. The resulting flexibility simplifies their use
as building blocks within custom kernels and applications.

To support a wide variety of applications, CUTLASS provides extensive support for
mixed-precision computations, providing specialized data-movement and
multiply-accumulate abstractions for half-precision floating
point (FP16), BFloat16 (BF16), Tensor Float 32 (TF32),
single-precision floating point (FP32),
[FP32 emulation via tensor core instruction](./examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm),
double-precision floating
point (FP64) types, integer data types (4b and 8b), and binary data types (1b).
CUTLASS demonstrates warp-synchronous matrix multiply operations
targeting the programmable, high-throughput _Tensor Cores_ implemented by
NVIDIA's Volta, Turing, Ampere, and Hopper architectures.

See the [Quick Start Guide](./media/docs/quickstart.md) to get started quickly.

See the [functionality listing](./media/docs/functionality.md) for the list of operations
supported at each level of the execution model hierarchy.

CUTLASS 3.0 introduced a new core library, CuTe, to describe and manipulate tensors of threads and data.
CuTe is a collection of C++ CUDA template abstractions for defining and operating on hierarchically multidimensional layouts of threads and data. CuTe provides `Layout` and `Tensor` objects that compactly package the type, shape, memory space, and layout of data, while performing the complicated indexing for the user. This lets programmers focus on the logical descriptions of their algorithms while CuTe does the mechanical bookkeeping for them. With these tools, we can quickly design, implement, and modify all dense linear algebra operations.

The core abstractions of CuTe are hierarchically multidimensional layouts which can be composed with data arrays to represent tensors. The representation of layouts is powerful enough to represent nearly everything we need to implement efficient dense linear algebra. Layouts can also be combined and manipulated via functional composition, on which we build a large set of common operations such as tiling and partitioning.

CUTLASS 3.0 and beyond adopts CuTe throughout the GEMM hierarchy in its templates. This greatly simplifies the design
and improves code composability and readability. More documentation specific to CuTe can be found in its [dedicated documentation directory](./media/docs/cute/00_quickstart.md).

In addition to GEMMs, CUTLASS implements high-performance convolution via the implicit GEMM algorithm. Implicit GEMM is the formulation of a convolution operation as a GEMM thereby taking advantage of CUTLASS's modular GEMM pipeline. This allows CUTLASS to build convolutions by reusing highly-optimized GEMM components.

# What's New in CUTLASS 3.5

CUTLASS 3.5 is an update to CUTLASS adding:

- Implicit GEMM Convolutions targeting Hopper SM90A via WGMMA + [TMA im2col](./include/cute/atom/copy_traits_sm90_im2col.hpp).
  + Native implementation in CUTLASS 3.x using CuTe, mirroring the [same design hierarchy as that of GEMMs](./media/docs/gemm_api_3x.md).
  + Support for 1D, 2D, and 3D convolutions in a [rank-agnostic fashion](./include/cutlass/conv/convnd_problem_shape.hpp).
  + Support for [Fprop](./test/unit/conv/device_3x/fprop/sm90_conv3d_fprop_implicit_gemm_s8_s8_s32_tensorop_s32.cu), [Dgrad](./test/unit/conv/device_3x/dgrad/sm90_conv2d_dgrad_implicit_gemm_f16_f16_f32_tensorop_f16.cu), and [Wgrad](./test/unit/conv/device_3x/wgrad/sm90_conv1d_wgrad_implicit_gemm_f16_f16_f32_tensorop_f16.cu) algorithms.
  + [CUTLASS profiler support](./python/cutlass_library/conv3x_emitter.py) for 2D and 3D convolutions implemented via the 3.x API.
  + NOTE: this is a beta release. Further updates to CUTLASS will include major performance improvements, feature enablement, and possible breaking changes to the API until 3.7 release. Your feedback is welcome on the design!
- Support for [Ada (SM89) FP8 tensor cores via the 2.x API](./examples/58_ada_fp8_gemm/ada_fp8_gemm.cu). Requires CUDA 12.4 or newer.
- [Ampere gather/scatter convolution example](./examples/59_ampere_gather_scatter_gemm/README.md) in CuTe and CUTLASS 3.x.
  + Showcasing how custom kernels can be written and optimized using CUTLASS 3.x and CuTe and the general strategy for implementing convolutions as specializations of GETTs.
  + Implementation of a coarse grained sparse gather/scatter kernel achieving peak performance on Ampere class tensor cores.
- 32x and 16x tile sizes are added to CUTLASS 2.x to improve the performance of narrow-tall and wide-short matrices.
- Updates to CuTe documentation for [`cute::Tensor<>`](./media/docs/cute/03_tensor.md), [MMA atoms](./media/docs/cute/0t_mma_atom.md), and an overhauled [CuTe GEMM tutorial series](./examples/cute/tutorial).
- Extensions to CuTe to support [L2 prefetching](./include/cute/algorithm/prefetch.hpp) and [TMA store+reductions](./include/cute/arch/copy_sm90_tma.hpp#L1337).
- Remove C++11 requirement on a few CUTLASS 2.x API header files. All CUTLASS files now require C++17.
- Fixes to greatly reduce build warnings.
- Updates and bugfixes from the community (thanks!)

Minimum requirements:

- Architecture: Volta
- Compiler: Must support at least C++17
- CUDA Toolkit version: 11.4

Starting from CUTLASS 3.0, CUTLASS removed support for the following:

- Maxwell and Pascal GPU architectures
- Ubuntu 16.04
- CUDA 10.2
- C++ language versions less than 17.

**See the [CHANGELOG](CHANGELOG.md) for a detailed listing of releases and updates.**

# Performance

<p align="center"><img src=media/images/cutlass-3.1-gemm-peak-performance.png></p>

CUTLASS primitives are very efficient.  When used to construct device-wide GEMM kernels,
they exhibit peak performance comparable to cuBLAS for scalar GEMM
computations. The above figure shows CUTLASS performance relative to cuBLAS
for large matrix dimensions on an [NVIDIA H100](https://www.nvidia.com/en-us/data-center/h100/) (NVIDIA Hopper architecture), 
an [NVIDIA L40](https://www.nvidia.com/en-us/data-center/l40/) (NVIDIA Ada architecture),
an [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/) (NVIDIA Ampere architecture),  
and an [NVIDIA A40](https://www.nvidia.com/en-us/data-center/a40/)  (NVIDIA Ampere architecture).
CUTLASS 3.0 was compiled with the [CUDA 12.0 Toolkit](https://developer.nvidia.com/cuda-downloads). 
Tensor Core operations are implemented using CUDA's 
[mma](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma) and
[wgmma](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-instructions) instructions.

<p align="center"><img src=media/images/cutlass-2.9-implicit-gemm-performance.png></p>

When using CUTLASS building blocks to construct device-wide implicit gemm (Fprop, Dgrad, and Wgrad)
kernels, CUTLASS performance is also comparable to cuDNN when running Resnet-50 layers on an [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/)
as shown in the above figure.  Tensor Core operations are implemented using CUDA's
[mma instruction](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma).

# Compatibility

CUTLASS requires a C++17 host compiler and 
performs best when built with the [**CUDA 12.4 Toolkit**](https://developer.nvidia.com/cuda-downloads).
It is also compatible with CUDA 11.4, CUDA 11.5, CUDA 11.6, CUDA 11.7, CUDA 11.8, CUDA 12.0, CUDA 12.1, CUDA 12.2.2, CUDA 12.3.1 and CUDA 12.3.2.

## Operating Systems
We have tested the following environments.

|**Operating System** | **Compiler** |
|-----------------|----------|
| Ubuntu 18.04 | GCC 7.5.0  |
| Ubuntu 20.04 | GCC 10.3.0 |
| Ubuntu 22.04 | GCC 11.2.0 |
| Ubuntu 22.04 | Clang 10.0.0 |
| Ubuntu 22.04 | Clang 14.0.6 |
| Ubuntu 22.04 | Clang 17.0.6 |
| Windows 10.0 | Visual Studio 2019 v16.11.27 |

Note: GCC 8.5.0 has known regressions regarding fold expressions and overloaded operators. Using GCC 7.5.0 or (preferred) GCC >= 9 is recommended.

## Hardware
CUTLASS runs successfully on the following NVIDIA GPUs, and it is expected to be efficient on Volta, Turing, Ampere, Ada, and Hopper architecture based NVIDIA GPUs.

|**GPU**|**CUDA Compute Capability**|**Minimum CUDA Toolkit Required by CUTLASS-3**|
|---|---|---|
|NVIDIA V100 Tensor Core GPU            |7.0|11.4|
|NVIDIA TitanV                          |7.0|11.4|
|NVIDIA GeForce RTX 2080 TI, 2080, 2070 |7.5|11.4|
|NVIDIA T4                              |7.5|11.4|
|NVIDIA A100 Tensor Core GPU            |8.0|11.4|
|NVIDIA A10                             |8.6|11.4|
|NVIDIA GeForce RTX 3090                |8.6|11.4|
|NVIDIA GeForce RTX 4090                |8.9|11.8|
|NVIDIA L40                             |8.9|11.8|
|NVIDIA H100 Tensor Core GPU            |9.0|11.8|

## Target Architecture

In general, PTX code generated for one target architecture can be run on future architectures (i.e., it is forward compatible).  However, CUDA 12.0 introduced the concept of "architecture-accelerated features" whose PTX does not have forward compatibility guarantees. Several Hopper PTX instructions fall under this category of architecture-accelerated features, and thus require a `sm_90a` target architecture (note the "a" appended). For more details on this and other architecture-accelerated instructions, please refer to the [CUDA Documentation](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#feature-availability).

The target architecture information is passed on to CUTLASS via the cmake flag `CUTLASS_NVCC_ARCHS`. In order to maximize performance on Hopper GH100, users are required to build CUTLASS with `90a` as the target architecture. If a user accidentally builds a kernel which uses SM90a features (e.g. Hopper Tensor Core Instructions), using the SM90 target (note the lack of "a"), with either CTK 12 or 11.8, the kernel is expected to fail with a runtime error.

```

cmake .. -DCUTLASS_NVCC_ARCHS="90a" 

```

Please refer to the [functionality documentation](./media/docs/functionality.md) for details on which kernels require which target architectures.

# Documentation

CUTLASS is described in the following documents and the accompanying
[Doxygen documentation](https://nvidia.github.io/cutlass).

- [Quick Start Guide](./media/docs/quickstart.md) - build and run CUTLASS
- [Functionality](./media/docs/functionality.md) - summarizes functionality available in CUTLASS
- [Efficient GEMM in CUDA](./media/docs/efficient_gemm.md) - describes how GEMM kernels may be implemented efficiently in CUDA
- [CUTLASS 3.x Design](./media/docs/cutlass_3x_design.md) - describes the CUTLASS 3.x design, its benefits, and how CuTe enables us to write much more composable components
- [GEMM API 3.x](./media/docs/gemm_api_3x.md) - describes the CUTLASS 3.x GEMM model and C++ template concepts
- [GEMM API 2.x](./media/docs/gemm_api.md) - describes the CUTLASS 2.x GEMM model and C++ template concepts
- [Implicit GEMM Convolution](./media/docs/implicit_gemm_convolution.md) - describes 2-D and 3-D convolution in CUTLASS
- [Code Organization](./media/docs/code_organization.md) - describes the organization and contents of the CUTLASS project
- [Terminology](./media/docs/terminology.md) - describes terms used in the code
- [Programming Guidelines](./media/docs/programming_guidelines.md) - guidelines for writing efficient modern CUDA C++
- [Fundamental types](./media/docs/fundamental_types.md) - describes basic C++ classes used in CUTLASS to represent numeric quantities and arrays
- [Layouts](./media/docs/layout.md) - describes layouts of matrices and tensors in memory
- [Tile Iterators](./media/docs/tile_iterator_concept.md) - describes C++ concepts for iterating over tiles of matrices in memory
- [CUTLASS Profiler](./media/docs/profiler.md) - command-line driven profiling application
- [CUTLASS Utilities](./media/docs/utilities.md) - additional templates used to facilate rapid development

# Resources
We have also described the structure of an efficient GEMM in our talk at the
[GPU Technology Conference 2018](http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf).

 - [CUTLASS: Software Primitives for Dense Linear Algebra at All Levels and Scales within CUDA](https://www.nvidia.com/en-us/on-demand/session/gtcsiliconvalley2018-s8854/)
 - [Developing CUDA Kernels to Push Tensor Cores to the Absolute Limit on NVIDIA A100](https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s21745/)
 - [Accelerating Convolution with Tensor Cores in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31883/)
 - [Accelerating Backward Data Gradient by Increasing Tensor Core Utilization in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41996/)
 - [CUTLASS: Python API, Enhancements, and NVIDIA Hopper](https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41131/)

# Building CUTLASS

CUTLASS is a header-only template library and does not need to be built to be used by other
projects. Client applications should target CUTLASS's `include/` directory in their include
paths.

CUTLASS unit tests, examples, and utilities can be build with CMake.
The minimum version of CMake is given in the [Quickstart guide](./media/docs/quickstart.md).
Make sure the `CUDACXX` environment  variable points to NVCC in the CUDA Toolkit installed
on your system.

```bash

$ export CUDACXX=${CUDA_INSTALL_PATH}/bin/nvcc

```

Create a build directory within the CUTLASS project, then run CMake. By default CUTLASS will build kernels
for CUDA architecture versions 5.0, 6.0, 6.1, 7.0, 7.5, 8.0, 8.6, 8.9, and 9.0.
To reduce compile time you can specify
the architectures to build CUTLASS for by changing the CMake configuration setting
`CUTLASS_NVCC_ARCHS`.

```bash

$ mkdir build && cd build



$ cmake .. -DCUTLASS_NVCC_ARCHS=80               # compiles for NVIDIA's Ampere Architecture

```

From the `build/` directory, compile and run the CUTLASS unit tests by building the target `test_unit` with make.

The unit tests are organized as several binaries mirroring the top-level namespaces of CUTLASS,
and they may be executed in parallel via make's `-j` command line argument.

```bash

$ make test_unit -j

...

...

...

[----------] Global test environment tear-down

[==========] 946 tests from 57 test cases ran. (10812 ms total)

[  PASSED  ] 946 tests.

```

All tests should pass on supported platforms, though the exact number of tests may vary over time.


# Project Structure

CUTLASS is arranged as a header-only library along with Utilities, Tools, Examples, and unit tests. 
[Doxygen documentation](https://nvidia.github.io/cutlass) provides a complete list of files, classes, 
and template concepts defined in the CUTLASS project.

A detailed explanation of the source code organization may be found in the 
[CUTLASS documentation](./media/docs/code_organization.md), but several main components are summarized below.

## CUTLASS Template Library

```

include/                     # client applications should target this directory in their build's include paths



  cutlass/                   # CUDA Templates for Linear Algebra Subroutines and Solvers - headers only



    arch/                    # direct exposure of architecture features (including instruction-level GEMMs)



    conv/                    # code specialized for convolution



    epilogue/                # code specialized for the epilogue of gemm/convolution



    gemm/                    # code specialized for general matrix product computations



    layout/                  # layout definitions for matrices, tensors, and other mathematical objects in memory



    platform/                # CUDA-capable Standard Library components



    reduction/               # bandwidth-limited reduction kernels that do not fit the "gemm" model



    thread/                  # simt code that can be performed within a CUDA thread

    

    transform/               # code specialized for layout, type, and domain transformations



    *                        # core vocabulary types, containers, and basic numeric operations



  cute/                      # CuTe Layout, layout algebra, MMA/Copy atoms, tiled MMA/Copy



    algorithm/               # Definitions of core operations such as copy, gemm, and operations on cute::tuples



    arch/                    # Bare bones PTX wrapper structs for copy and math instructions



    atom/                    # Meta-information either link to or built from arch/ operators



      mma_atom.hpp           # cute::Mma_Atom and cute::TiledMma



      copy_atom.hpp          # cute::Copy_Atom and cute::TiledCopy



      *sm*.hpp               # Arch specific meta-information for copy and math operations



    *                        # Core library types such as Shape, Stride, Layout, Tensor, and associated operations



```

### CUTLASS SDK Examples

[CUTLASS SDK examples](./examples) apply CUTLASS templates to implement basic computations.

### Tools

```

tools/

  library/                   # CUTLASS Instance Library - contains instantiations of all supported CUTLASS templates

    include/

      cutlass/

        library/



  profiler/                  # CUTLASS Profiler         - command-line utility for executing operations in the

                             #                            CUTLASS Library

  

  util/                      # CUTLASS Utilities        - contains numerous helper classes for

    include/                 #                            manging tensors in device memory, reference

      cutlass/               #                            implementations for GEMM, random initialization

        util/                #                            of tensors, and I/O.

```

### Test

The `test/unit/` directory consist of unit tests implemented with Google Test that demonstrate
basic usage of Core API components and complete tests of the CUTLASS GEMM computations.

Instructions for building and running the Unit tests are described in the [Quickstart guide](./media/docs/quickstart.md).

# Performance Profiling

The `tools/profiler/` directory contains a command-line utility for launching each of the GEMM kernels.
It can be built as follows:

```bash

$ make cutlass_profiler -j16

```
## Building all GEMM and Convolution kernels (_long_ build times)

By default, only one tile size is instantiated for each data type, math instruction, and layout.
To instantiate all, set the following environment variable when running CMake from an empty `build/` directory.
Beware, this results in *tens of thousands* of kernels and long build times. 
This would also result in a large binary size and on some platforms linker to fail on building the library.
Therefore, it's highly recommended to generate only a subset of kernels as demonstrated in the sub-section below.
```bash

$ cmake .. -DCUTLASS_NVCC_ARCHS=90a -DCUTLASS_LIBRARY_KERNELS=all

...

$ make cutlass_profiler -j16

```

## Building a subset of GEMM and Convolution kernels (_reduced_ build times)

To compile strictly one kernel or a small set of kernels, a comma-delimited list of kernel names with 
wildcard characters may be used to reduce the set of kernels. The following examples show building exactly one
or a subset of kernels for NVIDIA Ampere and Turing architecture:

### Building a subset Tensor Core GEMM kernels

To compile a subset of Tensor Core GEMM kernels with FP32 accumulation and FP16 input targeting NVIDIA Ampere and Turing architecture, 
use the below cmake command line:
```bash

$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*gemm_f16_*_nt_align8

...

$ make cutlass_profiler -j16

```

Example command line for profiling a subset of Tensor Core GEMM kernels is as follows:
```bash

./tools/profiler/cutlass_profiler --kernels=cutlass_tensorop_s*gemm_f16_*_nt_align8 --m=3456 --n=4096 --k=4096



...

=============================

  Problem ID: 1



        Provider: CUTLASS

   OperationKind: gemm

       Operation: cutlass_tensorop_s1688gemm_f16_256x128_32x2_nt_align8



          Status: Success

    Verification: ON

     Disposition: Passed



reference_device: Passed

          cuBLAS: Passed



       Arguments: --gemm_kind=universal --m=3456 --n=4096 --k=4096 --A=f16:column --B=f16:row --C=f32:column --alpha=1  \

                  --beta=0 --split_k_slices=1 --batch_count=1 --op_class=tensorop --accum=f32 --cta_m=256 --cta_n=128  \

                  --cta_k=32 --stages=2 --warps_m=4 --warps_n=2 --warps_k=1 --inst_m=16 --inst_n=8 --inst_k=8 --min_cc=75  \

                  --max_cc=1024



           Bytes: 118489088  bytes

           FLOPs: 115992428544  flops



         Runtime: 1.55948  ms

          Memory: 70.7616 GiB/s



            Math: 74378.8 GFLOP/s







=============================

...

```

### Building one CUDA Core GEMM kernel

To compile one SGEMM kernel targeting NVIDIA Ampere and Turing architecture, use the below cmake command line:
```bash

$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_simt_sgemm_128x128_8x2_nn_align1

...

$ make cutlass_profiler -j16

```

Example command line for profiling single SGEMM CUDA kernel is as follows:
```bash

$ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=3456 --n=4096 --k=4096



=============================

  Problem ID: 1



        Provider: CUTLASS

   OperationKind: gemm

       Operation: cutlass_simt_sgemm_128x128_8x2_nn_align1



          Status: Success

    Verification: ON

     Disposition: Passed



          cuBLAS: Passed



       Arguments: --m=3456 --n=4096 --k=4096 --A=f32:column --B=f32:column --C=f32:column --alpha=1 --beta=0 --split_k_slices=1  \

                  --batch_count=1 --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4  \

                  --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024



           Bytes: 180355072  bytes

           FLOPs: 115992428544  flops



         Runtime: 6.73655  ms

          Memory: 24.934 GiB/s



            Math: 17218.4 GFLOP/s



=============================

```

### Building a subset of Tensor Core Convolution kernels

To compile a subset of Tensor core convolution kernels implementing forward propagation (fprop) with FP32 accumulation 
and FP16 input targeting NVIDIA Ampere and Turing architecture, use the below cmake command line:
```bash

$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*fprop_optimized_f16

...

$ make cutlass_profiler -j16

```

Example command line for profiling a subset of Tensor Core convolution kernels is as follows:

```bash

$ ./tools/profiler/cutlass_profiler --kernels=cutlass_tensorop_s*fprop_optimized_f16 --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3



...

=============================

  Problem ID: 1



        Provider: CUTLASS

   OperationKind: conv2d

       Operation: cutlass_tensorop_s16816fprop_optimized_f16_128x128_32x5_nhwc



          Status: Success

    Verification: ON

     Disposition: Passed



reference_device: Passed



       Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1  \

                  --stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f16:nhwc --Filter=f16:nhwc --Output=f32:nhwc  \

                  --conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1  \

                  --eq_gemm_provider=none --op_class=tensorop --accum=f32 --cta_m=128 --cta_n=128 --cta_k=32 --stages=5  \

                  --warps_m=2 --warps_n=2 --warps_k=1 --inst_m=16 --inst_n=8 --inst_k=16 --min_cc=80 --max_cc=1024



           Bytes: 1130659840  bytes

           FLOPs: 118482796544  flops



         Runtime: 0.711496  ms

          Memory: 1479.99 GiB/s



            Math: 166526 GFLOP/s



=============================

...

```


### Building one Convolution CUDA kernel

To compile and run one CUDA Core convolution kernel implementing forward propagation (fprop) with F32 accumulation 
and FP32 input targeting NVIDIA Ampere and Turing architecture, use the below cmake command line:
```bash

$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_simt_sfprop_optimized_128x128_8x2_nhwc

...

$ make cutlass_profiler -j16

```

Example command line for profiling one CUDA Core convolution kernel:

```bash

$ ./tools/profiler/cutlass_profiler --kernels=cutlass_simt_sfprop_optimized_128x128_8x2_nhwc --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3





=============================

  Problem ID: 1



        Provider: CUTLASS

   OperationKind: conv2d

       Operation: cutlass_simt_sfprop_optimized_128x128_8x2_nhwc



          Status: Success

    Verification: ON

     Disposition: Passed



reference_device: Passed



       Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1  \

                  --stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f32:nhwc --Filter=f32:nhwc --Output=f32:nhwc  \

                  --conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1  \

                  --eq_gemm_provider=none --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4  \

                  --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024



           Bytes: 2055798784  bytes

           FLOPs: 118482796544  flops



         Runtime: 7.34266  ms

          Memory: 260.752 GiB/s



            Math: 16136.2 GFLOP/s





=============================



```

## More Details on Compiling CUTLASS Kernels and CUTLASS Profiler
- Please follow the links for more CMake examples on selectively compiling CUTLASS kernels:
  - [GEMM CMake Examples](./media/docs/quickstart.md#gemm-cmake-examples) 
  - [Implicit GEMM convolution CMake Examples](./media/docs/quickstart.md#convolution-cmake-examples)
- [Further details about the CUTLASS Profiler are described here.](./media/docs/profiler.md)


# About

CUTLASS is released by NVIDIA Corporation as Open Source software under the 
[3-clause "New" BSD license](LICENSE.txt).

# Contributors

The official list of CUTLASS developers and contributors is available here: [CONTRIBUTORS](CONTRIBUTORS.md).

# Copyright

Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause

```

  Redistribution and use in source and binary forms, with or without

  modification, are permitted provided that the following conditions are met:



  1. Redistributions of source code must retain the above copyright notice, this

  list of conditions and the following disclaimer.



  2. Redistributions in binary form must reproduce the above copyright notice,

  this list of conditions and the following disclaimer in the documentation

  and/or other materials provided with the distribution.



  3. Neither the name of the copyright holder nor the names of its

  contributors may be used to endorse or promote products derived from

  this software without specific prior written permission.



  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

  SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

```