Spaces:
Sleeping
Sleeping
File size: 7,482 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
"""
Basic example of using the CUTLASS Python interface to run a 2d convolution
"""
import sys
print("This example is deprecated. Please see examples/python for examples of using "
"the CUTLASS Python interface.")
sys.exit(0)
import argparse
import numpy as np
import torch
import cutlass_bindings
import cutlass.backend as pycutlass
from cutlass.backend import *
from cutlass.backend.utils.reference_model import Conv2dReferenceModule
from cutlass.backend.utils.device import device_cc
parser = argparse.ArgumentParser(
description=("Launch a 2d convolution kernel from Python. "
"See https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#convo-intro for notation."))
parser.add_argument("--n", default=1, type=int, help="N dimension of the convolution")
parser.add_argument("--c", default=64, type=int, help="C dimension of the convolution")
parser.add_argument("--h", default=32, type=int, help="H dimension of the convolution")
parser.add_argument("--w", default=32, type=int, help="W dimension of the convolution")
parser.add_argument("--k", default=32, type=int, help="N dimension of the convolution")
parser.add_argument("--r", default=3, type=int, help="R dimension of the convolution")
parser.add_argument("--s", default=3, type=int, help="S dimension of the convolution")
parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel")
try:
args = parser.parse_args()
except:
sys.exit(0)
# Check that the device is of a sufficient compute capability
cc = device_cc()
assert cc >= 70, "The CUTLASS Python Conv2d example requires compute capability greater than or equal to 70."
alignment = 1
np.random.seed(0)
# Allocate a pool of device memory to be used by the kernel
pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32)
# Set the compiler to use to NVCC
pycutlass.compiler.nvcc()
# Set up A, B, C and accumulator
A = TensorDescription(cutlass_bindings.float16, cutlass_bindings.TensorNHWC, alignment)
B = TensorDescription(cutlass_bindings.float16, cutlass_bindings.TensorNHWC, alignment)
C = TensorDescription(cutlass_bindings.float32, cutlass_bindings.TensorNHWC, alignment)
element_acc = cutlass_bindings.float32
element_epilogue = cutlass_bindings.float32
# Select instruction shape based on the Tensor Core instructions supported
# by the device on which we are running
if cc == 70:
instruction_shape = [8, 8, 4]
elif cc == 75:
instruction_shape = [16, 8, 8]
else:
# Use CUTLASS kernels for CC 80 by default (e.g., for cases in which SM86 is used)
cc = 80
instruction_shape = [16, 8, 16]
math_inst = MathInstruction(
instruction_shape,
A.element, B.element, element_acc,
cutlass_bindings.OpClass.TensorOp,
MathOperation.multiply_add
)
tile_description = TileDescription(
[128, 128, 32], # Threadblock shape
2, # Number of stages
[2, 2, 1], # Number of warps within each dimension of the threadblock shape
math_inst
)
epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue)
operation = Conv2dOperation(
conv_kind=cutlass_bindings.conv.Operator.fprop,
iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized,
arch=cc, tile_description=tile_description,
A=A, B=B, C=C, stride_support=StrideSupport.Strided,
epilogue_functor=epilogue_functor
)
if args.print_cuda:
print(operation.rt_module.emit())
operations = [operation, ]
# Compile the operation
pycutlass.compiler.add_module(operations)
# Randomly initialize tensors
problem_size = cutlass_bindings.conv.Conv2dProblemSize(
cutlass_bindings.Tensor4DCoord(args.n, args.h, args.c, args.w),
cutlass_bindings.Tensor4DCoord(args.k, args.r, args.s, args.c),
cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), # Padding
cutlass_bindings.MatrixCoord(1, 1), # Strides
cutlass_bindings.MatrixCoord(1, 1), # Dilation
cutlass_bindings.conv.Mode.cross_correlation,
1, # Split k slices
1 # Groups
)
tensor_A_size = cutlass_bindings.conv.implicit_gemm_tensor_a_size(operation.conv_kind, problem_size)
tensor_B_size = cutlass_bindings.conv.implicit_gemm_tensor_b_size(operation.conv_kind, problem_size)
tensor_C_size = cutlass_bindings.conv.implicit_gemm_tensor_c_size(operation.conv_kind, problem_size)
tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5))
tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5))
tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5))
tensor_D = torch.ones(size=(tensor_C_size,), dtype=torch.float32, device="cuda")
alpha = 1.
beta = 0.
arguments = Conv2dArguments(
operation=operation, problem_size=problem_size,
A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D,
output_op=operation.epilogue_type(alpha, beta)
)
# Run the operation
operation.run(arguments)
arguments.sync()
# Run the host reference module and compare to the CUTLASS result
reference = Conv2dReferenceModule(A, B, C, operation.conv_kind)
tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta)
try:
assert torch.equal(tensor_D, tensor_D_ref)
except:
assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2)
print("Passed.")
|