Spaces:
Sleeping
Sleeping
File size: 28,368 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/arch/copy.hpp>
#include <cute/atom/copy_traits.hpp>
#include <cute/atom/mma_atom.hpp>
#include <cute/util/type_traits.hpp>
#include <cute/tensor.hpp>
namespace cute
{
template <class... Args>
struct Copy_Atom;
template <class CopyOperation, class CopyInternalType>
struct Copy_Atom<CopyOperation, CopyInternalType> : Copy_Atom<Copy_Traits<CopyOperation>, CopyInternalType>
{};
template <class... Args, class CopyInternalType>
struct Copy_Atom<Copy_Traits<Args...>, CopyInternalType>
: Copy_Traits<Args...>
{
using Traits = Copy_Traits<Args...>;
// Bit and Thr layouts from the Copy_Traits
using ThrID = typename Traits::ThrID;
using BitLayoutSrc = typename Traits::SrcLayout;
using BitLayoutDst = typename Traits::DstLayout;
using BitLayoutRef = typename Traits::RefLayout;
using ValType = CopyInternalType;
using ValLayoutSrc = decltype(recast_layout<uint1_t, ValType>(BitLayoutSrc{}));
using ValLayoutDst = decltype(recast_layout<uint1_t, ValType>(BitLayoutDst{}));
using ValLayoutRef = decltype(recast_layout<uint1_t, ValType>(BitLayoutRef{}));
CUTE_STATIC_ASSERT_V(size<0>(ValLayoutSrc{}) == size(ThrID{}), "CopyOperation is not valid for Src of ValType.");
CUTE_STATIC_ASSERT_V(size<0>(ValLayoutDst{}) == size(ThrID{}), "CopyOperation is not valid for Dst of ValType.");
CUTE_STATIC_ASSERT_V(size<0>(ValLayoutRef{}) == size(ThrID{}), "CopyOperation is not valid for Ref of ValType.");
static constexpr int NumValSrc = size<1>(ValLayoutSrc{});
static constexpr int NumValDst = size<1>(ValLayoutDst{});
// Additional Trait parameters/transformations
template <class... TraitsArgs>
CUTE_HOST_DEVICE
auto
with(TraitsArgs&&... args) const {
auto traits = Traits::with(static_cast<TraitsArgs&&>(args)...);
return Copy_Atom<decltype(traits), CopyInternalType>{traits};
}
//
// Tensor call interfaces
//
// Check and call instruction, or recurse
template <class SEngine, class SLayout,
class DEngine, class DLayout>
CUTE_HOST_DEVICE
void
call(Tensor<SEngine,SLayout> const& src,
Tensor<DEngine,DLayout> & dst) const
{
static_assert(SLayout::rank == 1, "Expected rank-1 src tensor");
static_assert(DLayout::rank == 1, "Expected rank-1 dst tensor");
if constexpr (is_constant<NumValSrc, decltype(size(src))>::value ||
is_constant<NumValDst, decltype(size(dst))>::value) {
// Dispatch to unpack to execute instruction
return copy_unpack(*this, src, dst);
} else
if constexpr (is_tuple<decltype(shape(src))>::value &&
is_tuple<decltype(shape(dst))>::value) {
// If the size of the src/dst doesn't match the instruction,
// recurse this rank-1 layout by peeling off the mode
// ((A,B,C,...)) -> (A,B,C,...)
return copy(*this, tensor<0>(src), tensor<0>(dst));
} else {
static_assert(dependent_false<SEngine>, "No instruction match and no recursion possible.");
}
}
// Accept mutable temporaries
template <class SEngine, class SLayout,
class DEngine, class DLayout>
CUTE_HOST_DEVICE
void
call(Tensor<SEngine,SLayout> const& src,
Tensor<DEngine,DLayout> && dst) const
{
return call(src, dst);
}
};
//
// A tiling of copy atoms
//
template <class TiledCopy, class ThrIdx>
struct ThrCopy;
template <class Copy_Atom,
class LayoutCopy_TV, // (tid,vid) -> coord [Need not be 2D...]
class ShapeTiler_MN> // coord space
struct TiledCopy : Copy_Atom
{
// Layout information from the CopyAtom
using AtomThrID = typename Copy_Atom::ThrID; // thrid -> thr_idx
using AtomLayoutSrc = typename Copy_Atom::ValLayoutSrc; // (thr,val) -> offset
using AtomLayoutDst = typename Copy_Atom::ValLayoutDst; // (thr,val) -> offset
using AtomLayoutRef = typename Copy_Atom::ValLayoutRef; // (thr,val) -> offset
using AtomNumThr = decltype(size<0>(AtomLayoutRef{}));
using AtomNumVal = decltype(size<1>(AtomLayoutRef{}));
// Layout information for the TiledCopy
using Tiler_MN = ShapeTiler_MN;
using TiledLayout_TV = LayoutCopy_TV;
using TiledNumThr = decltype(size<0>(TiledLayout_TV{}));
using TiledNumVal = decltype(size<1>(TiledLayout_TV{}));
CUTE_STATIC_ASSERT_V(TiledNumThr{} % AtomNumThr{} == Int<0>{}, "TiledCopy uses too few thrs for selected CopyAtom");
CUTE_STATIC_ASSERT_V(TiledNumVal{} % AtomNumVal{} == Int<0>{}, "TiledCopy uses too few vals for selected CopyAtom");
// Tile a tensor or a layout from shape
// (M,N,...)
// to shape
// ((ThrV,ThrX),FrgV,(RestM,RestN,...))
// where
// ThrV: The threads local to a COPY_ATOM Src.
// ThrX: The threads tiled across COPY_ATOMs Src.
// FrgV: The values local to a COPY_ATOM Src.
// RestM: The values tiled in M.
// RestN: The values tiled in N.
template <class STensor>
CUTE_HOST_DEVICE constexpr static
auto
tidfrg_S(STensor&& stensor)
{
CUTE_STATIC_ASSERT_V(rank(stensor) >= rank(Tiler_MN{}), "Rank of tensor to be partitioned too small.");
// Tile the stensor and compute the (src-thr, src-val) -> (ref-thr, ref-val) layout
return tile2thrfrg(zipped_divide(stensor,Tiler_MN{}), right_inverse(AtomLayoutRef{}).compose(AtomLayoutSrc{}));
}
// Tile a tensor or a layout from shape
// (M,N,...)
// to shape
// ((ThrV,ThrX),FrgV,(RestM,RestN,...))
// where
// ThrV: The threads local to a COPY_ATOM Dst.
// ThrX: The threads tiled across COPY_ATOMs Dst.
// FrgV: The values local to a COPY_ATOM Dst.
// RestM: The values tiled in M.
// RestN: The values tiled in N.
template <class DTensor>
CUTE_HOST_DEVICE constexpr static
auto
tidfrg_D(DTensor&& dtensor)
{
CUTE_STATIC_ASSERT_V(rank(dtensor) >= rank(Tiler_MN{}), "Rank of tensor to be partitioned too small.");
// Tile the dtensor and compute the (dst-thr, dst-val) -> (ref-thr, ref-val) layout
return tile2thrfrg(zipped_divide(dtensor,Tiler_MN{}), right_inverse(AtomLayoutRef{}).compose(AtomLayoutDst{}));
}
// Tile a tensor or a layout from shape
// ((TileM,TileN,...), (RestM,RestN,...))
// to shape
// ((ThrV,ThrX),FrgV,(RestM,RestN,...))
template <class Tensor, class Ref2TrgLayout>
CUTE_HOST_DEVICE constexpr static
auto
tile2thrfrg(Tensor&& tensor, Ref2TrgLayout const& ref2trg)
{
// Take the thrs/vals that the atom is interested in
// NOTE: Assumes the AtomNumThr are contiguous and identity within TiledThrID
auto atom_layout_TV = zipped_divide(TiledLayout_TV{}, make_shape(AtomNumThr{}, AtomNumVal{}));
// ((atom_tid,atom_val),(rest_tid,rest_val)) -> (m,n)
// Transform to the trg layout
auto trg_layout_TV = atom_layout_TV.compose(ref2trg, _);
// ((trg_tid,trg_val),(rest_tid,rest_val)) -> (m,n)
// Transform the thrs mode from thrid to thr_idx
// NOTE: Assumes the AtomNumThr are contiguous and identity within TiledThrID
auto thrval2mn = coalesce(zip(trg_layout_TV), Shape<_1,Shape<_1,_1>>{});
// ((trg_tid,rest_tid),(trg_val,rest_val)) -> (m,n)
/// ==================
// Transform the tile mode
auto tv_tensor = tensor.compose(thrval2mn, _);
// ((thrid,val),(RestM,RestN,...))
// Unfold and return
return tv_tensor(make_coord(_,_), _);
}
// retile_S and retile_D assume they are working with the reference layout -- they are the same
template <class Tensor>
CUTE_HOST_DEVICE constexpr static
auto
retile(Tensor&& tensor)
{
constexpr int R = remove_cvref_t<Tensor>::rank;
// Assert that AtomLayoutSrc|Dst is identity so we can skip the Ref transformation
// Assume the first size<0>(tensor) elements are the first val_ids in TiledLayout_TV.
// Then, we only need the shape+layout of those size<0>(tensor) elements in TiledLayout_TV
// and that shape is what we gather from the other modes of tensor
auto V = size<0>(tensor);
auto frg_layout_mn = upcast<TiledNumThr{} * V>(right_inverse(TiledLayout_TV{}).with_shape(shape(Tiler_MN{})));
// (m,n) -> v_idx -- The shape and order of the V inside of TiledLayout_TV
auto frg_layout_v = zipped_divide(logical_product(make_layout(V), right_inverse(frg_layout_mn)), make_layout(AtomNumVal{}));
// (atom_vals,rest_vals) -> (v,m,n)
/// =======
// Tile the tensor for TileFrg
auto t_tensor = zipped_divide(tensor, prepend(product_each(shape(frg_layout_mn)), V));
// ((TileV,TileM,TileN,...),(1,RestM,RestN,...))
// Transform the tile mode
auto v_tensor = t_tensor.compose(frg_layout_v, _);
// ((atom_vals,rest_vals),(1,RM,RN,...))
// Unfold and return
return v_tensor(_, append<R>(Int<0>{},_));
}
CUTE_HOST_DEVICE constexpr static
auto
get_layoutS_TV()
{
// (M,N) -> (M,N)
auto ref_S = make_layout(make_shape(shape(Tiler_MN{}), Int<1>{}));
// (thr_idx,val_idx) -> (M,N)
return tile2thrfrg(ref_S, right_inverse(AtomLayoutRef{}).compose(AtomLayoutSrc{}))(_,_,Int<0>{});
}
CUTE_HOST_DEVICE constexpr static
auto
get_layoutS_MN()
{
// (thr_idx,val_idx) -> (M,N)
auto layoutS_TV = get_layoutS_TV();
// (M,K) -> (thr_idx,val_idx)
auto layoutS_MK = right_inverse(layoutS_TV).with_shape(shape(Tiler_MN{}));
// athrid = (v,m,k) -> thr_idx
auto thrID_S = make_layout(size<0>(TiledLayout_TV{}));
return cute::make_tuple(layoutS_MK, thrID_S);
}
CUTE_HOST_DEVICE constexpr static
auto
get_layoutD_TV()
{
// (M,N) -> (M,N)
auto ref_D = make_layout(make_shape(shape(Tiler_MN{}), Int<1>{}));
// (thr_idx,val_idx) -> (M,N)
return tile2thrfrg(ref_D, right_inverse(AtomLayoutRef{}).compose(AtomLayoutDst{}))(_,_,Int<0>{});
}
CUTE_HOST_DEVICE constexpr static
auto
get_layoutD_MN()
{
// (thr_idx,val_idx) -> (M,N)
auto layoutD_TV = get_layoutD_TV();
// (M,K) -> (thr_idx,val_idx)
auto layoutD_MK = right_inverse(layoutD_TV).with_shape(shape(Tiler_MN{}));
// athrid = (v,m,k) -> thr_idx
auto thrID_D = make_layout(size<0>(TiledLayout_TV{}));
return cute::make_tuple(layoutD_MK, thrID_D);
}
template <class ThrIdx,
__CUTE_REQUIRES(is_integral<ThrIdx>::value)>
CUTE_HOST_DEVICE static
auto
get_slice(ThrIdx const& thr_idx)
{
return ThrCopy<TiledCopy, ThrIdx>(thr_idx);
}
template <class ThrIdx,
__CUTE_REQUIRES(is_integral<ThrIdx>::value)>
CUTE_HOST_DEVICE static
auto
get_thread_slice(ThrIdx const& thr_idx)
{
return get_slice(thr_idx);
}
};
template <class TiledCopy, class ThrIdx>
struct ThrCopy
{
ThrIdx thr_idx_;
CUTE_HOST_DEVICE
ThrCopy(ThrIdx const& thr_idx) : thr_idx_(thr_idx) {}
template <class STensor>
CUTE_HOST_DEVICE
auto
partition_S(STensor&& stensor) const {
//static_assert(sizeof(typename remove_cvref_t<STensor>::value_type) == sizeof(typename TiledCopy::ValType),
// "Expected ValType for tiling SrcTensor.");
auto thr_tensor = make_tensor(static_cast<STensor&&>(stensor).data(), TiledCopy::tidfrg_S(stensor.layout()));
return thr_tensor(thr_idx_, _, repeat<rank_v<STensor>>(_));
}
template <class DTensor>
CUTE_HOST_DEVICE
auto
partition_D(DTensor&& dtensor) const {
//static_assert(sizeof(typename remove_cvref_t<DTensor>::value_type) == sizeof(typename TiledCopy::ValType),
// "Expected ValType for tiling DstTensor.");
auto thr_tensor = make_tensor(static_cast<DTensor&&>(dtensor).data(), TiledCopy::tidfrg_D(dtensor.layout()));
return thr_tensor(thr_idx_, _, repeat<rank_v<DTensor>>(_));
}
template <class STensor>
CUTE_HOST_DEVICE static
auto
retile_S(STensor&& stensor) {
// static_assert(sizeof(typename remove_cvref_t<STensor>::value_type) == sizeof(typename TiledCopy::ValType),
// "Expected ValType for tiling SrcTensor.");
return make_tensor(static_cast<STensor&&>(stensor).data(), TiledCopy::retile(stensor.layout()));
}
template <class DTensor>
CUTE_HOST_DEVICE static
auto
retile_D(DTensor&& dtensor) {
// static_assert(sizeof(typename remove_cvref_t<DTensor>::value_type) == sizeof(typename TiledCopy::ValType),
// "Expected ValType for tiling DstTensor.");
return make_tensor(static_cast<DTensor&&>(dtensor).data(), TiledCopy::retile(dtensor.layout()));
}
};
template <class... Args,
class LayoutCopy_TV,
class Tiler>
CUTE_HOST_DEVICE
auto
make_tiled_copy_impl(Copy_Atom<Args...> const& atom,
LayoutCopy_TV const&,
Tiler const&)
{
return TiledCopy<Copy_Atom<Args...>, LayoutCopy_TV, Tiler>{atom};
}
//
// These tile the Copy_Atom as a whole
//
template <class... CArgs, class... MArgs>
CUTE_HOST_DEVICE
auto
make_tiled_copy_A(Copy_Atom<CArgs...> const& copy_atom,
TiledMMA<MArgs...> const& mma)
{
return make_tiled_copy_impl(copy_atom, mma.get_layoutA_TV(), make_shape(tile_size<0>(mma),tile_size<2>(mma)));
}
template <class... CArgs, class... MArgs>
CUTE_HOST_DEVICE
auto
make_tiled_copy_B(Copy_Atom<CArgs...> const& copy_atom,
TiledMMA<MArgs...> const& mma)
{
return make_tiled_copy_impl(copy_atom, mma.get_layoutB_TV(), make_shape(tile_size<1>(mma),tile_size<2>(mma)));
}
template <class... CArgs, class... MArgs>
CUTE_HOST_DEVICE
auto
make_tiled_copy_C(Copy_Atom<CArgs...> const& copy_atom,
TiledMMA<MArgs...> const& mma)
{
return make_tiled_copy_impl(copy_atom, mma.get_layoutC_TV(), make_shape(tile_size<0>(mma),tile_size<1>(mma)));
}
// returns the smallest tiled copy that can retile LayoutC_TV
// for use with pipelined epilogues with subtiled stores
template <class... CArgs, class... MArgs>
CUTE_HOST_DEVICE
auto
make_tiled_copy_C_atom(Copy_Atom<CArgs...> const& copy_atom,
TiledMMA<MArgs...> const& mma)
{
// Truncate the V-layout to just the Copy_Atom, keep the V-order
auto layoutC_TV = mma.get_layoutC_TV();
auto copy_V = Int<Copy_Atom<CArgs...>::NumValSrc>{};
CUTE_STATIC_ASSERT_V(copy_V <= size<1>(layoutC_TV));
auto layout_TV = composition(layoutC_TV, make_layout(make_shape(size<0>(layoutC_TV), copy_V)));
// Recompute tiler and restride the TV layout for the new tiler
// Tiler -- Find the active elements in the MMA tensor and generate a tiler to extract them
// Convert to the awkward by-mode tiler to preserve the modes of the tiled MMA
auto mma_tiler = make_shape(tile_size<0>(mma),tile_size<1>(mma));
auto mma_zeros = repeat_like(mma_tiler, Int<0>{});
auto tiler = transform(make_seq<rank(mma_tiler)>{}, [&](auto i) {
return filter(composition(make_layout(mma_tiler, replace<i>(mma_zeros, Int<1>{})), layout_TV));
});
// Layout_TV -- Find the (tid,vid) -> tile coord transformation
// Apply the tiler to a reference and transform the codomain
// tile_coord -> mma_coord
auto tile2mma = composition(make_layout(mma_tiler), tiler);
// (tid,vid) -> tile_coord
auto layout_tv = composition(left_inverse(tile2mma), layout_TV);
return make_tiled_copy_impl(copy_atom, layout_tv, tiler);
}
/** Produce a TiledCopy from logical thread and values layouts.
* The thread and value layouts map coordinates to thr_idx and val_idx.
* The product of these layouts is taken to produce the TV layout and the Tiler.
* Useful when threads and values need very specific mappings onto coordinates
* in the target tensors.
*/
template <class... Args,
class ThrLayout,
class ValLayout = Layout<_1>>
CUTE_HOST_DEVICE
auto
make_tiled_copy(Copy_Atom<Args...> const& copy_atom,
ThrLayout const& thr_layout = {}, // (m,n) -> thr_idx
ValLayout const& val_layout = {}) // (m,n) -> val_idx
{
// Take the raked_products to compute the Layout_MN
// (M,N) -> (thr_idx, val_idx)
auto layout_mn = raked_product(thr_layout, val_layout);
// (thr_idx, val_idx) -> (M,N)
auto layout_tv = right_inverse(layout_mn).with_shape(make_shape(size(thr_layout), size(val_layout)));
// Tiler for extracting relevant elements
// (M,N) -> tensor coord
auto tiler = product_each(shape(layout_mn));
#if 0
print("thr_layout: "); print(thr_layout); print("\n");
print("val_layout: "); print(val_layout); print("\n");
print("layout_mn : "); print(layout_mn); print("\n");
print("layout_tv : "); print(layout_tv); print("\n");
print("tiler : "); print(tiler); print("\n");
#endif
return make_tiled_copy_impl(copy_atom, layout_tv, tiler);
}
/** Produce a TiledCopy from thread and value offset maps.
* The TV Layout maps threads and values to the codomain of the data_layout.
* It is verified that the intended codomain is valid within data_layout.
* Useful when threads and values don't care about owning specific coordinates, but
* care more about the vector-width and offsets between them.
*/
template <class... Args, class AtomTVLayout, class DataLayout>
CUTE_HOST_DEVICE constexpr
auto
make_cotiled_copy(Copy_Atom<Args...> const& copy_atom,
AtomTVLayout const& atom_tv_layout, // atom (thr,val) -> data addr
DataLayout const& data_layout) // coord -> data addr The target layout
{
static_assert(is_static<AtomTVLayout>::value);
static_assert(is_static<DataLayout>::value);
// data addr -> data coord Append 1:0 so off-the-ends get the stride-0
auto inv_data_layout = make_layout(left_inverse(data_layout), Layout<_1,_0>{});
// (tid,vid) -> data_coord
auto layout_tv_data = composition(inv_data_layout, atom_tv_layout);
// Check validity
CUTE_STATIC_ASSERT_V(coalesce(composition(data_layout, layout<1>(layout_tv_data))) == coalesce(layout<1>(atom_tv_layout)),
"The memory pointed to by AtomTVLayout does not exist in the DataLayout.");
#if 0
if (thread0()) {
print("data_layout : "); print(data_layout); print("\n");
print("atom_tv_layout : "); print(atom_tv_layout); print("\n");
print("layout_tv_data : "); print(layout_tv_data); print("\n");
}
#endif
//
// Tiler -- Find the active elements in the DATA tensor and generate a tiler to extract them
//
// Convert to the awkward by-mode tiler to preserve the modes of the tiled DATA
auto flat_data_shape = product_each(shape(data_layout));
auto flat_data_zeros = repeat<rank(flat_data_shape)>(Int<0>{});
auto tiler = transform(make_seq<rank(flat_data_shape)>{}, [&](auto i) {
return filter(composition(make_layout(flat_data_shape, replace<i>(flat_data_zeros, Int<1>{})), layout_tv_data));
});
//
// Layout_TV -- Find the (tid,vid) -> tile coord transformation
//
// Apply the tiler to a reference and transform the codomain
// tile_coord -> data_coord
auto tile2data = composition(make_layout(flat_data_shape), tiler);
// (tid,vid) -> tile_coord
auto layout_tv = composition(left_inverse(tile2data), layout_tv_data);
#if 0
if (thread0()) {
print("tiler : "); print(tiler); print("\n");
print("tile2data : "); print(tile2data); print("\n");
print("layout_tv : "); print(layout_tv); print("\n");
}
#endif
return make_tiled_copy_impl(copy_atom, layout_tv, tiler);
}
// Make a TiledCopy out of the copy_atom that matches the Src-Layout of tiled_copy
template <class... Args,
class TiledCopy>
CUTE_HOST_DEVICE
auto
make_tiled_copy_S(Copy_Atom<Args...> const& copy_atom,
TiledCopy const& tiled_copy)
{
return make_tiled_copy_impl(copy_atom, tiled_copy.get_layoutS_TV(), typename TiledCopy::Tiler_MN{});
}
// Make a TiledCopy out of the copy_atom that matches the Dst-Layout of tiled_copy
template <class... Args,
class TiledCopy>
CUTE_HOST_DEVICE
auto
make_tiled_copy_D(Copy_Atom<Args...> const& copy_atom,
TiledCopy const& tiled_copy)
{
return make_tiled_copy_impl(copy_atom, tiled_copy.get_layoutD_TV(), typename TiledCopy::Tiler_MN{});
}
//
// Size
//
// The logical size of a TileCopy
template <int... I, class... Args>
CUTE_HOST_DEVICE constexpr
auto
tile_size(TiledCopy<Args...> const&)
{
return size<I...>(typename TiledCopy<Args...>::Tiler_MN{});
}
// The number of threads involved in a TiledCopy
template <class... Args>
CUTE_HOST_DEVICE constexpr
auto
size(TiledCopy<Args...> const&)
{
return typename TiledCopy<Args...>::TiledNumThr{};
}
//
// Display utilities
//
template <class... Args, class T>
CUTE_HOST_DEVICE
void
print(Copy_Atom<Copy_Traits<Args...>, T> const&)
{
using Atom = Copy_Atom<Copy_Traits<Args...>, T>;
print("Copy_Atom\n");
print(" ThrID: "); print(typename Atom::ThrID{}); print("\n");
print(" ValLayoutSrc: "); print(typename Atom::ValLayoutSrc{}); print("\n");
print(" ValLayoutDst: "); print(typename Atom::ValLayoutDst{}); print("\n");
print(" ValLayoutRef: "); print(typename Atom::ValLayoutRef{}); print("\n");
print(" ValueType: "); print(sizeof_bits<typename Atom::ValType>::value); print("b\n");
}
template <class Atom, class... Args>
CUTE_HOST_DEVICE
void
print(TiledCopy<Atom, Args...> const& copy, char const* pad = "")
{
using Copy = TiledCopy<Atom, Args...>;
print("TiledCopy\n");
print(" Tiler_MN: "); print(typename Copy::Tiler_MN{}); print("\n");
print(" TiledLayout_TV: "); print(typename Copy::TiledLayout_TV{}); print("\n");
print(static_cast<Atom const&>(copy));
}
template <class TiledCopy, class ThrIdx>
CUTE_HOST_DEVICE
void
print(ThrCopy<TiledCopy, ThrIdx> const& thr_copy)
{
print("ThrCopy\n");
print(" ThrIdx: "); print(thr_copy.thr_idx_); print("\n");
print(TiledCopy{});
}
template <class... Args>
CUTE_HOST_DEVICE
auto
print_latex(TiledCopy<Args...> const& copy)
{
auto [layoutS_MN, thrID_S] = copy.get_layoutS_MN();
auto [layoutD_MN, thrID_D] = copy.get_layoutD_MN();
print_latex_copy(layoutS_MN, thrID_S,
layoutD_MN, thrID_D);
}
// MNK Copy Layout to Latex TIKZ -- 8-value color coded by thread
template <class LayoutS, class ThrIDS,
class LayoutD, class ThrIDD>
CUTE_HOST_DEVICE
void
print_latex_copy(LayoutS const& S, ThrIDS const& TS, // (m,n) -> (tid,vid) and tid -> thr_idx
LayoutD const& D, ThrIDD const& TD) // (m,n) -> (tid,vid) and tid -> thr_idx
{
CUTE_STATIC_ASSERT_V(rank(S) == Int<2>{});
CUTE_STATIC_ASSERT_V(rank(D) == Int<2>{});
assert(size<0>(S) == size<0>(D));
assert(size<1>(S) == size<1>(D));
char const* latex_header =
"\\documentclass{standalone}\n"
"\\usepackage{tikz}\n"
"\\usetikzlibrary{external}\n"
"\\tikzexternalize\n"
"\\begin{document}\n"
"\\begin{tikzpicture}[x={(0cm,-1cm)},y={(1cm,0cm)},box/.style={rectangle,draw=black,thick,minimum size=1cm,anchor=center}]\n\n";
char const* latex_footer =
"\\end{tikzpicture}\n"
"\\end{document}\n";
char const* color_map[8] = {"{rgb,255:red,175;green,175;blue,255}",
"{rgb,255:red,175;green,255;blue,175}",
"{rgb,255:red,255;green,255;blue,175}",
"{rgb,255:red,255;green,175;blue,175}",
"{rgb,255:red,210;green,210;blue,255}",
"{rgb,255:red,210;green,255;blue,210}",
"{rgb,255:red,255;green,255;blue,210}",
"{rgb,255:red,255;green,210;blue,210}",};
// Header
printf("%% LayoutS: "); print(S); printf("\n");
printf("%% ThrIDS : "); print(TS); printf("\n");
printf("%% LayoutD: "); print(D); printf("\n");
printf("%% ThrIDD : "); print(TD); printf("\n\n");
printf(latex_header);
// S starting at 0,0
for (int i = 0; i < size<0>(S); ++i) {
for (int j = 0; j < size<1>(S); ++j) {
int thrid = S(i,j) % size(TS);
int val_idx = S(i,j) / size(TS);
int thr_idx = TS(thrid);
printf("\\node[box,fill=%s] at (%d,%d) {\\shortstack{T%d \\\\ V%d}};\n",
color_map[thr_idx % 8],
i, j,
thr_idx, val_idx);
}
}
// D starting at 0,size<1>(S)+3
for (int i = 0; i < size<0>(D); ++i) {
for (int j = 0; j < size<1>(D); ++j) {
int thrid = D(i,j) % size(TD);
int val_idx = D(i,j) / size(TD);
int thr_idx = TD(thrid);
printf("\\node[box,fill=%s] at (%d,%d) {\\shortstack{T%d \\\\ V%d}};\n",
color_map[thr_idx % 8],
i, j + size<1>(S) + 3,
thr_idx, val_idx);
}
}
// S Labels
for (int i = 0, j = -1; i < size<0>(S); ++i) {
printf("\\node at (%d,%d) {\\Large{\\texttt{%d}}};\n", i, j, i);
}
for (int j = 0, i = -1; j < size<1>(S); ++j) {
printf("\\node at (%d,%d) {\\Large{\\texttt{%d}}};\n", i, j, j);
}
// D Labels
for (int i = 0, j = size<1>(D); i < size<0>(S); ++i) {
printf("\\node at (%d,%d) {\\Large{\\texttt{%d}}};\n", i, j + size<1>(S) + 3, i);
}
for (int j = 0, i = -1; j < size<1>(D); ++j) {
printf("\\node at (%d,%d) {\\Large{\\texttt{%d}}};\n", i, j + size<1>(S) + 3, j);
}
// Footer
printf(latex_footer);
}
} // end namespace cute
////////////////////////////////////////////////////////////////////////////////////////////////////
#include <cute/atom/copy_traits_sm50.hpp>
#include <cute/atom/copy_traits_sm75.hpp>
#include <cute/atom/copy_traits_sm80.hpp>
#include <cute/atom/copy_traits_sm90.hpp>
// Config
#if (__CUDACC_VER_MAJOR__ >= 12)
# define CUTE_COPY_ATOM_TMA_SM90_ENABLED
#endif
#if defined(CUTE_COPY_ATOM_TMA_SM90_ENABLED)
#include <cute/atom/copy_traits_sm90_tma.hpp>
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
|