Spaces:
Sleeping
Sleeping
File size: 8,977 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/arch/mma.hpp>
#include <cute/tensor.hpp>
namespace cute
{
namespace detail {
template <class X, class = void>
struct supports_output_scaling { static constexpr bool value = false; };
template <class X>
struct supports_output_scaling<X, void_t<decltype(declval<X>().accumulate_)>> { static constexpr bool value = true; };
} // end namespace detail
/**
* concept MMA_Traits
* {
* using ValTypeD = // Logical A-value type
* using ValTypeA = // Logical B-value type
* using ValTypeB = // Logical C-value type
* using ValTypeC = // Logical D-value type (NOTE: Not used? Assumed == ValTypeD)
*
* using FrgTypeA = // A-type consumed by MMA (if ommitted, same as ValTypeA)
* using FrgTypeB = // B_type consumed by MMA (if ommitted, same as ValTypeB)
* using FrgTypeC = // C_type consumed by MMA (if ommitted, same as ValTypeC)
*
* using Shape_MNK = // Logical MxNxK shape of the MMA
*
* using ThrID = // Logical thread id (tid) -> tidx
*
* using ALayout = // (Logical thread id (tid), Logical value id (vid)) -> Flat MK-coord
* using BLayout = // (Logical thread id (tid), Logical value id (vid)) -> Flat NK-coord
* using CLayout = // (Logical thread id (tid), Logical value id (vid)) -> Flat MN-coord
* };
*/
template <class MMAOperation, class... MMAOpArgs>
struct MMA_Traits
{
static_assert(sizeof(MMAOperation) == 0, "MMA_Traits not implemented for this MMA_Operation.");
};
template <class D, class A, class B, class C>
struct MMA_Traits<UniversalFMA<D,A,B,C>>
{
using ValTypeD = D;
using ValTypeA = A;
using ValTypeB = B;
using ValTypeC = C;
// Logical shape of the MMA
using Shape_MNK = Shape<_1,_1,_1>;
// Logical thread id (tid) -> tidx
using ThrID = Layout<_1>;
// (Logical thread id (tid), Logical value id (vid)) -> coord
// (tid,vid) -> (m,k)
using ALayout = Layout<Shape<_1,_1>>;
// (tid,vid) -> (n,k)
using BLayout = Layout<Shape<_1,_1>>;
// (tid,vid) -> (m,n)
using CLayout = Layout<Shape<_1,_1>>;
};
//
// Generic mma_unpack for any MMA_Traits
//
template <class MMA_Op, class... MMA_Args,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout>
CUTE_HOST_DEVICE constexpr
void
mma_unpack(MMA_Traits<MMA_Op, MMA_Args...> const& traits,
Tensor<TD, DLayout> & D,
Tensor<TA, ALayout> const& A,
Tensor<TB, BLayout> const& B,
Tensor<TC, CLayout> const& C)
{
static_assert(is_rmem<TD>::value, "Expected registers in MMA_Atom::call");
static_assert(is_rmem<TA>::value, "Expected registers in MMA_Atom::call");
static_assert(is_rmem<TB>::value, "Expected registers in MMA_Atom::call");
static_assert(is_rmem<TC>::value, "Expected registers in MMA_Atom::call");
// Register value types from the MMA_Operation register arrays
using RegTypeD = typename remove_extent<typename MMA_Op::DRegisters>::type;
using RegTypeA = typename remove_extent<typename MMA_Op::ARegisters>::type;
using RegTypeB = typename remove_extent<typename MMA_Op::BRegisters>::type;
using RegTypeC = typename remove_extent<typename MMA_Op::CRegisters>::type;
using MMATraits = MMA_Traits<MMA_Op, MMA_Args...>;
[[maybe_unused]] constexpr int RegNumD = extent<typename MMA_Op::DRegisters>::value;
constexpr int RegNumA = extent<typename MMA_Op::ARegisters>::value;
constexpr int RegNumB = extent<typename MMA_Op::BRegisters>::value;
constexpr int RegNumC = extent<typename MMA_Op::CRegisters>::value;
Tensor rA = recast<RegTypeA>(A);
Tensor rB = recast<RegTypeB>(B);
CUTE_STATIC_ASSERT_V(size(rA) == Int<RegNumA>{});
CUTE_STATIC_ASSERT_V(size(rB) == Int<RegNumB>{});
if constexpr (is_same<RegTypeD, void>::value)
{
static_assert(is_same<typename TD::value_type, typename TC::value_type>::value, "GMMA C and D value_type must match.");
static_assert(is_same<DLayout, CLayout>::value, "GMMA C and D layouts must match.");
// assert((void*)&C == (void*)&D);
Tensor rC = recast<RegTypeC>(D); // NOTE: D and C are same, so use mutable D
//CUTE_STATIC_ASSERT_V(size(rC) == Int<RegNumC>{});
if constexpr (detail::supports_output_scaling<MMATraits>::value) {
detail::explode(MMA_Op::fma,
rA, make_int_sequence<RegNumA>{},
rB, make_int_sequence<RegNumB>{},
rC, make_int_sequence<RegNumC>{},
&(traits.accumulate_), seq<0>{});
}
else {
detail::explode(MMA_Op::fma,
rA, make_int_sequence<RegNumA>{},
rB, make_int_sequence<RegNumB>{},
rC, make_int_sequence<RegNumC>{});
}
}
else {
Tensor rD = recast<RegTypeD>(D);
Tensor rC = recast<RegTypeC>(C);
CUTE_STATIC_ASSERT_V(size(rD) == Int<RegNumD>{});
CUTE_STATIC_ASSERT_V(size(rC) == Int<RegNumC>{});
if constexpr (detail::supports_output_scaling<MMATraits>::value) {
detail::explode(MMA_Op::fma,
rD, make_int_sequence<RegNumD>{},
rA, make_int_sequence<RegNumA>{},
rB, make_int_sequence<RegNumB>{},
rC, make_int_sequence<RegNumC>{},
&(traits.accumulate_), seq<0>{});
}
else {
detail::explode(MMA_Op::fma,
rD, make_int_sequence<RegNumD>{},
rA, make_int_sequence<RegNumA>{},
rB, make_int_sequence<RegNumB>{},
rC, make_int_sequence<RegNumC>{});
}
}
}
//
// Accept mutable temporaries
//
template <class MMA_Op, class... MMA_Args,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout>
CUTE_HOST_DEVICE constexpr
void
mma_unpack(MMA_Traits<MMA_Op, MMA_Args...> const& traits,
Tensor<TD, DLayout> && D,
Tensor<TA, ALayout> const& A,
Tensor<TB, BLayout> const& B,
Tensor<TC, CLayout> const& C)
{
mma_unpack(traits, D, A, B, C);
}
namespace detail {
template <class X, class = void>
struct FrgTypeA_or_Default { using type = typename X::ValTypeA; };
template <class X>
struct FrgTypeA_or_Default<X,void_t<typename X::FrgTypeA>> { using type = typename X::FrgTypeA; };
template <class X, class = void>
struct FrgTypeB_or_Default { using type = typename X::ValTypeB; };
template <class X>
struct FrgTypeB_or_Default<X,void_t<typename X::FrgTypeB>> { using type = typename X::FrgTypeB; };
template <class X, class = void>
struct FrgTypeC_or_Default { using type = typename X::ValTypeC; };
template <class X>
struct FrgTypeC_or_Default<X,void_t<typename X::FrgTypeC>> { using type = typename X::FrgTypeC; };
} // end namespace detail
} // namespace cute
|