Spaces:
Sleeping
Sleeping
File size: 18,725 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Statically sized array of elements that accommodates subbyte trivial types
in a packed storage.
*/
#pragma once
#include <cute/config.hpp>
#include <cute/numeric/numeric_types.hpp>
#include <cute/numeric/integral_constant.hpp>
namespace cute
{
//
// Underlying subbyte storage type
//
template <class T>
using subbyte_storage_type_t = conditional_t<(cute::sizeof_bits_v<T> <= 8), uint8_t,
conditional_t<(cute::sizeof_bits_v<T> <= 16), uint16_t,
conditional_t<(cute::sizeof_bits_v<T> <= 32), uint32_t,
conditional_t<(cute::sizeof_bits_v<T> <= 64), uint64_t,
conditional_t<(cute::sizeof_bits_v<T> <= 128), uint128_t,
T>>>>>;
template <class T> struct subbyte_iterator;
template <class, class> struct swizzle_ptr;
//
// subbyte_reference
// Proxy object for sub-byte element references
//
template <class T>
struct subbyte_reference
{
// Iterator Element type (const or non-const)
using element_type = T;
// Iterator Value type without type qualifier.
using value_type = remove_cv_t<T>;
// Storage type (const or non-const)
using storage_type = conditional_t<(is_const_v<T>), subbyte_storage_type_t<T> const, subbyte_storage_type_t<T>>;
static_assert(sizeof_bits_v<storage_type> % 8 == 0, "Storage type is not supported");
static_assert(sizeof_bits_v<element_type> <= sizeof_bits_v<storage_type>,
"Size of Element must not be greater than Storage.");
private:
// Bitmask for covering one item
static constexpr storage_type BitMask = storage_type(storage_type(-1) >> (sizeof_bits_v<storage_type> - sizeof_bits_v<element_type>));
// Flag for fast branching on straddled elements
static constexpr bool is_storage_unaligned = ((sizeof_bits_v<storage_type> % sizeof_bits_v<element_type>) != 0);
friend struct subbyte_iterator<T>;
// Pointer to storage element
storage_type* ptr_ = nullptr;
// Bit index of value_type starting position within storage_type element.
// RI: 0 <= idx_ < sizeof_bit<storage_type>
uint8_t idx_ = 0;
// Ctor
template <class PointerType>
CUTE_HOST_DEVICE constexpr
subbyte_reference(PointerType* ptr, uint8_t idx = 0) : ptr_(reinterpret_cast<storage_type*>(ptr)), idx_(idx) {}
public:
// Copy Ctor
CUTE_HOST_DEVICE constexpr
subbyte_reference(subbyte_reference const& other) {
*this = element_type(other);
}
// Copy Assignment
CUTE_HOST_DEVICE constexpr
subbyte_reference& operator=(subbyte_reference const& other) {
return *this = element_type(other);
}
// Assignment
template <class T_ = element_type>
CUTE_HOST_DEVICE constexpr
enable_if_t<!is_const_v<T_>, subbyte_reference&> operator=(element_type x)
{
static_assert(is_same_v<T_, element_type>, "Do not specify template arguments!");
storage_type item = (reinterpret_cast<storage_type const&>(x) & BitMask);
// Update the current storage element
storage_type bit_mask_0 = storage_type(BitMask << idx_);
ptr_[0] = storage_type((ptr_[0] & ~bit_mask_0) | (item << idx_));
// If value_type is unaligned with storage_type (static) and this is a straddled value (dynamic)
if (is_storage_unaligned && idx_ + sizeof_bits_v<value_type> > sizeof_bits_v<storage_type>) {
uint8_t straddle_bits = uint8_t(sizeof_bits_v<storage_type> - idx_);
storage_type bit_mask_1 = storage_type(BitMask >> straddle_bits);
// Update the next storage element
ptr_[1] = storage_type((ptr_[1] & ~bit_mask_1) | (item >> straddle_bits));
}
return *this;
}
// Comparison of referenced values
CUTE_HOST_DEVICE constexpr friend
bool operator==(subbyte_reference const& x, subbyte_reference const& y) { return x.get() == y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator!=(subbyte_reference const& x, subbyte_reference const& y) { return x.get() != y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator< (subbyte_reference const& x, subbyte_reference const& y) { return x.get() < y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator> (subbyte_reference const& x, subbyte_reference const& y) { return x.get() > y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator<=(subbyte_reference const& x, subbyte_reference const& y) { return x.get() <= y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator>=(subbyte_reference const& x, subbyte_reference const& y) { return x.get() >= y.get(); }
// Value
CUTE_HOST_DEVICE
element_type get() const
{
if constexpr (is_same_v<bool, value_type>) { // Extract to bool -- potentially faster impl
return bool((*ptr_) & (BitMask << idx_));
} else { // Extract to element_type
// Extract from the current storage element
auto item = storage_type((ptr_[0] >> idx_) & BitMask);
// If value_type is unaligned with storage_type (static) and this is a straddled value (dynamic)
if (is_storage_unaligned && idx_ + sizeof_bits_v<value_type> > sizeof_bits_v<storage_type>) {
uint8_t straddle_bits = uint8_t(sizeof_bits_v<storage_type> - idx_);
storage_type bit_mask_1 = storage_type(BitMask >> straddle_bits);
// Extract from the next storage element
item |= storage_type((ptr_[1] & bit_mask_1) << straddle_bits);
}
return reinterpret_cast<element_type&>(item);
}
}
// Extract to type element_type
CUTE_HOST_DEVICE constexpr
operator element_type() const {
return get();
}
// Address
subbyte_iterator<T> operator&() const {
return {ptr_, idx_};
}
};
//
// subbyte_iterator
// Random-access iterator over subbyte references
//
template <class T>
struct subbyte_iterator
{
// Iterator Element type (const or non-const)
using element_type = T;
// Iterator Value type without type qualifier.
using value_type = remove_cv_t<T>;
// Storage type (const or non-const)
using storage_type = conditional_t<(is_const_v<T>), subbyte_storage_type_t<T> const, subbyte_storage_type_t<T>>;
// Reference proxy type
using reference = subbyte_reference<element_type>;
static_assert(sizeof_bits_v<storage_type> % 8 == 0, "Storage type is not supported");
static_assert(sizeof_bits_v<element_type> <= sizeof_bits_v<storage_type>,
"Size of Element must not be greater than Storage.");
private:
template <class, class> friend struct swizzle_ptr;
// Pointer to storage element
storage_type* ptr_ = nullptr;
// Bit index of value_type starting position within storage_type element.
// RI: 0 <= idx_ < sizeof_bit<storage_type>
uint8_t idx_ = 0;
public:
// Ctor
subbyte_iterator() = default;
// Ctor
template <class PointerType>
CUTE_HOST_DEVICE constexpr
subbyte_iterator(PointerType* ptr, uint8_t idx = 0) : ptr_(reinterpret_cast<storage_type*>(ptr)), idx_(idx) { }
CUTE_HOST_DEVICE constexpr
reference operator*() const {
return reference(ptr_, idx_);
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator& operator+=(uint64_t k) {
k = sizeof_bits_v<value_type> * k + idx_;
ptr_ += k / sizeof_bits_v<storage_type>;
idx_ = k % sizeof_bits_v<storage_type>;
return *this;
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator operator+(uint64_t k) const {
return subbyte_iterator(ptr_, idx_) += k;
}
CUTE_HOST_DEVICE constexpr
reference operator[](uint64_t k) const {
return *(*this + k);
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator& operator++() {
idx_ += sizeof_bits_v<value_type>;
if (idx_ >= sizeof_bits_v<storage_type>) {
++ptr_;
idx_ -= sizeof_bits_v<storage_type>;
}
return *this;
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator operator++(int) {
subbyte_iterator ret(*this);
++(*this);
return ret;
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator& operator--() {
if (idx_ >= sizeof_bits_v<value_type>) {
idx_ -= sizeof_bits_v<value_type>;
} else {
--ptr_;
idx_ += sizeof_bits_v<storage_type> - sizeof_bits_v<value_type>;
}
return *this;
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator operator--(int) {
subbyte_iterator ret(*this);
--(*this);
return ret;
}
CUTE_HOST_DEVICE constexpr friend
bool operator==(subbyte_iterator const& x, subbyte_iterator const& y) {
return x.ptr_ == y.ptr_ && x.idx_ == y.idx_;
}
CUTE_HOST_DEVICE constexpr friend
bool operator< (subbyte_iterator const& x, subbyte_iterator const& y) {
return x.ptr_ < y.ptr_ || (x.ptr_ == y.ptr_ && x.idx_ < y.idx_);
}
CUTE_HOST_DEVICE constexpr friend
bool operator!=(subbyte_iterator const& x, subbyte_iterator const& y) { return !(x == y); }
CUTE_HOST_DEVICE constexpr friend
bool operator<=(subbyte_iterator const& x, subbyte_iterator const& y) { return !(y < x); }
CUTE_HOST_DEVICE constexpr friend
bool operator> (subbyte_iterator const& x, subbyte_iterator const& y) { return (y < x); }
CUTE_HOST_DEVICE constexpr friend
bool operator>=(subbyte_iterator const& x, subbyte_iterator const& y) { return !(x < y); }
// Conversion to raw pointer with loss of subbyte index
CUTE_HOST_DEVICE constexpr friend
T* raw_pointer_cast(subbyte_iterator const& x) {
assert(x.idx_ == 0);
return reinterpret_cast<T*>(x.ptr_);
}
// Conversion to NewT_ with possible loss of subbyte index
template <class NewT_>
CUTE_HOST_DEVICE constexpr friend
auto recast_ptr(subbyte_iterator const& x) {
using NewT = conditional_t<(is_const_v<T>), NewT_ const, NewT_>;
if constexpr (cute::is_subbyte_v<NewT>) { // Making subbyte_iter, preserve the subbyte idx
return subbyte_iterator<NewT>(x.ptr_, x.idx_);
} else { // Not subbyte, assume/assert subbyte idx 0
return reinterpret_cast<NewT*>(raw_pointer_cast(x));
}
CUTE_GCC_UNREACHABLE;
}
CUTE_HOST_DEVICE friend void print(subbyte_iterator x) {
printf("subptr[%db](%p.%u)", int(sizeof_bits_v<T>), x.ptr_, x.idx_);
}
};
//
// array_subbyte
// Statically sized array for non-byte-aligned data types
//
template <class T, size_t N>
struct array_subbyte
{
using element_type = T;
using value_type = remove_cv_t<T>;
using pointer = element_type*;
using const_pointer = element_type const*;
using size_type = size_t;
using difference_type = ptrdiff_t;
//
// References
//
using reference = subbyte_reference<element_type>;
using const_reference = subbyte_reference<element_type const>;
//
// Iterators
//
using iterator = subbyte_iterator<element_type>;
using const_iterator = subbyte_iterator<element_type const>;
// Storage type (const or non-const)
using storage_type = conditional_t<(is_const_v<T>), subbyte_storage_type_t<T> const, subbyte_storage_type_t<T>>;
static_assert(sizeof_bits_v<storage_type> % 8 == 0, "Storage type is not supported");
private:
// Number of storage elements, ceil_div
static constexpr size_type StorageElements = (N * sizeof_bits_v<value_type> + sizeof_bits_v<storage_type> - 1) / sizeof_bits_v<storage_type>;
// Internal storage
storage_type storage[StorageElements];
public:
constexpr
array_subbyte() = default;
CUTE_HOST_DEVICE constexpr
array_subbyte(array_subbyte const& x) {
CUTE_UNROLL
for (size_type i = 0; i < StorageElements; ++i) {
storage[i] = x.storage[i];
}
}
CUTE_HOST_DEVICE constexpr
size_type size() const {
return N;
}
CUTE_HOST_DEVICE constexpr
size_type max_size() const {
return N;
}
CUTE_HOST_DEVICE constexpr
bool empty() const {
return !N;
}
// Efficient clear method
CUTE_HOST_DEVICE constexpr
void clear() {
CUTE_UNROLL
for (size_type i = 0; i < StorageElements; ++i) {
storage[i] = storage_type(0);
}
}
CUTE_HOST_DEVICE constexpr
void fill(T const& value) {
CUTE_UNROLL
for (size_type i = 0; i < N; ++i) {
at(i) = value;
}
}
CUTE_HOST_DEVICE constexpr
reference at(size_type pos) {
return iterator(storage)[pos];
}
CUTE_HOST_DEVICE constexpr
const_reference at(size_type pos) const {
return const_iterator(storage)[pos];
}
CUTE_HOST_DEVICE constexpr
reference operator[](size_type pos) {
return at(pos);
}
CUTE_HOST_DEVICE constexpr
const_reference operator[](size_type pos) const {
return at(pos);
}
CUTE_HOST_DEVICE constexpr
reference front() {
return at(0);
}
CUTE_HOST_DEVICE constexpr
const_reference front() const {
return at(0);
}
CUTE_HOST_DEVICE constexpr
reference back() {
return at(N-1);
}
CUTE_HOST_DEVICE constexpr
const_reference back() const {
return at(N-1);
}
CUTE_HOST_DEVICE constexpr
pointer data() {
return reinterpret_cast<pointer>(storage);
}
CUTE_HOST_DEVICE constexpr
const_pointer data() const {
return reinterpret_cast<const_pointer>(storage);
}
CUTE_HOST_DEVICE constexpr
storage_type* raw_data() {
return storage;
}
CUTE_HOST_DEVICE constexpr
storage_type const* raw_data() const {
return storage;
}
CUTE_HOST_DEVICE constexpr
iterator begin() {
return iterator(storage);
}
CUTE_HOST_DEVICE constexpr
const_iterator begin() const {
return const_iterator(storage);
}
CUTE_HOST_DEVICE constexpr
const_iterator cbegin() const {
return begin();
}
CUTE_HOST_DEVICE constexpr
iterator end() {
return iterator(storage) + N;
}
CUTE_HOST_DEVICE constexpr
const_iterator end() const {
return const_iterator(storage) + N;
}
CUTE_HOST_DEVICE constexpr
const_iterator cend() const {
return end();
}
//
// Comparison operators
//
};
//
// Operators
//
template <class T, size_t N>
CUTE_HOST_DEVICE constexpr
void clear(array_subbyte<T,N>& a)
{
a.clear();
}
template <class T, size_t N>
CUTE_HOST_DEVICE constexpr
void fill(array_subbyte<T,N>& a, T const& value)
{
a.fill(value);
}
} // namespace cute
//
// Specialize tuple-related functionality for cute::array_subbyte
//
#if defined(__CUDACC_RTC__)
#include <cuda/std/tuple>
#else
#include <tuple>
#endif
namespace cute
{
template <size_t I, class T, size_t N>
CUTE_HOST_DEVICE constexpr
T& get(array_subbyte<T,N>& a)
{
static_assert(I < N, "Index out of range");
return a[I];
}
template <size_t I, class T, size_t N>
CUTE_HOST_DEVICE constexpr
T const& get(array_subbyte<T,N> const& a)
{
static_assert(I < N, "Index out of range");
return a[I];
}
template <size_t I, class T, size_t N>
CUTE_HOST_DEVICE constexpr
T&& get(array_subbyte<T,N>&& a)
{
static_assert(I < N, "Index out of range");
return cute::move(a[I]);
}
} // end namespace cute
namespace CUTE_STL_NAMESPACE
{
template <class T>
struct is_reference<cute::subbyte_reference<T>>
: CUTE_STL_NAMESPACE::true_type
{};
template <class T, size_t N>
struct tuple_size<cute::array_subbyte<T,N>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, N>
{};
template <size_t I, class T, size_t N>
struct tuple_element<I, cute::array_subbyte<T,N>>
{
using type = T;
};
template <class T, size_t N>
struct tuple_size<const cute::array_subbyte<T,N>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, N>
{};
template <size_t I, class T, size_t N>
struct tuple_element<I, const cute::array_subbyte<T,N>>
{
using type = T;
};
} // end namespace CUTE_STL_NAMESPACE
#ifdef CUTE_STL_NAMESPACE_IS_CUDA_STD
namespace std
{
#if defined(__CUDACC_RTC__)
template <class... _Tp>
struct tuple_size;
template <size_t _Ip, class... _Tp>
struct tuple_element;
#endif
template <class T, size_t N>
struct tuple_size<cute::array_subbyte<T,N>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, N>
{};
template <size_t I, class T, size_t N>
struct tuple_element<I, cute::array_subbyte<T,N>>
{
using type = T;
};
template <class T, size_t N>
struct tuple_size<const cute::array_subbyte<T,N>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, N>
{};
template <size_t I, class T, size_t N>
struct tuple_element<I, const cute::array_subbyte<T,N>>
{
using type = T;
};
} // end namespace std
#endif // CUTE_STL_NAMESPACE_IS_CUDA_STD
|