Spaces:
Sleeping
Sleeping
File size: 21,327 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/util/type_traits.hpp>
#include <cute/numeric/integral_constant.hpp> // cute::true_type, cute::false_type
#include <cute/numeric/integer_sequence.hpp>
#include <cute/container/cuda_types.hpp>
//#include <cute/container/array.hpp> // Advanced optimizations
//
// cute::tuple is like std::tuple, with two differences.
//
// 1. It works on both host and device.
// 2. Its template arguments must be semiregular types.
//
// Semiregular types are default constructible and copyable.
// They include "value types" like int or float,
// but do _not_ include references like int& or float&.
// (See std::tie for an example of a tuple of references.)
//
// This is simplified over the implementations in std::, cuda::std::, and thrust:: by ignoring much of
// the conversion SFINAE, special overloading, and avoiding cvref template types.
// Furthermore, the empty base optimization (EBO) is MORE aggressive by avoiding
// construction calls, and ignoring any need for unique element addresses.
//
// Over standard-conforming tuple implementations, this appears to accelerate compilation times by over 3x.
namespace cute
{
namespace detail
{
// EBO stands for "empty base optimization."
// We use this technique to ensure that cute::tuple
// doesn't need to waste space storing any template arguments
// of cute::tuple that have no data (like integral_constant).
// Otherwise, cute::tuple would need to spend at least 1 byte
// for each of its template arguments.
//
// EBO always "holds" a single value of type T.
// N is like an array index that TupleBase uses
// to access the desired tuple element.
template <size_t N, class T, bool IsEmpty = is_empty<T>::value>
struct EBO;
template <class T, size_t N, bool B>
CUTE_HOST_DEVICE constexpr C<N> findt(EBO<N, T, B> const&)
{ return {}; }
// Specialization for types T that have no data;
// the "static tuple leaf." Valid T here include
// integral_constant<U, Value>, Int<Value>,
// and any other semiregular type
// for which std::is_empty_v<T> is true.
template <size_t N, class T>
struct EBO<N, T, true>
{
CUTE_HOST_DEVICE constexpr
EBO() {}
CUTE_HOST_DEVICE constexpr
EBO(T const&) {}
};
template <size_t N, class T>
CUTE_HOST_DEVICE constexpr T getv(EBO<N, T, true> const&)
{ return {}; }
// Specialization for types T that are not empty;
// the "dynamic tuple leaf." Valid T here include int,
// any other integral or floating-point type,
// or any semiregular type for which std::is_empty_v<T> is false.
template <size_t N, class T>
struct EBO<N, T, false>
{
CUTE_HOST_DEVICE constexpr
EBO() : t_{} {}
template <class U>
CUTE_HOST_DEVICE constexpr
EBO(U const& u) : t_{u} {}
T t_;
};
template <size_t N, class T>
CUTE_HOST_DEVICE constexpr T const& getv(EBO<N, T, false> const& x)
{ return x.t_; }
template <size_t N, class T>
CUTE_HOST_DEVICE constexpr T& getv(EBO<N, T, false>& x)
{ return x.t_; }
template <size_t N, class T>
CUTE_HOST_DEVICE constexpr T&& getv(EBO<N, T, false>&& x)
{ return cute::move(x.t_); }
template <class IdxSeq, class... T>
struct TupleBase;
// Base class of cute::tuple binds each element to an index
// by inheriting from EBO<i, t> for each (i, t) in (I..., T...).
// The storage (for nonempty t) lives in the base classes.
template <size_t... I, class... T>
struct TupleBase<index_sequence<I...>, T...>
: EBO<I,T>...
{
CUTE_HOST_DEVICE constexpr
TupleBase() {}
template <class... U>
CUTE_HOST_DEVICE constexpr explicit
TupleBase(U const&... u)
: EBO<I,T>(u)... {}
template <class... U>
CUTE_HOST_DEVICE constexpr
TupleBase(TupleBase<index_sequence<I...>, U...> const& u)
: EBO<I,T>(getv(static_cast<EBO<I,U> const&>(u)))... {}
};
} // end namespace detail
// Attempting to use the following commented-out alias
// in the declaration of `struct tuple` causes MSVC 2022 build errors.
//
//template <class... T>
//using TupleBase = detail::TupleBase<make_index_sequence<sizeof...(T)>, T...>;
// This is the actual cute::tuple class.
// The storage (if any) lives in TupleBase's EBO base classes.
//
// Inheriting from the above alias TupleBase
// causes MSVC 2022 build errors when assigning one tuple to another:
// In summary: this is verbose as a work-around for MSVC build errors.
template <class... T>
struct tuple : detail::TupleBase<make_index_sequence<sizeof...(T)>, T...>
{
CUTE_HOST_DEVICE constexpr
tuple() {}
template <class... U>
CUTE_HOST_DEVICE constexpr
tuple(U const&... u) : detail::TupleBase<make_index_sequence<sizeof...(T)>, T...>(u...) {}
template <class... U>
CUTE_HOST_DEVICE constexpr
tuple(tuple<U...> const& u)
: detail::TupleBase<make_index_sequence<sizeof...(T)>, T...>(static_cast<detail::TupleBase<make_index_sequence<sizeof...(U)>, U...> const&>(u)) {}
};
//
// get for cute::tuple (just like std::get for std::tuple)
//
template <size_t I, class... T>
CUTE_HOST_DEVICE constexpr
decltype(auto)
get(tuple<T...> const& t) noexcept
{
static_assert(I < sizeof...(T), "Index out of range");
return detail::getv<I>(t);
}
template <size_t I, class... T>
CUTE_HOST_DEVICE constexpr
decltype(auto)
get(tuple<T...>& t) noexcept
{
static_assert(I < sizeof...(T), "Index out of range");
return detail::getv<I>(t);
}
template <size_t I, class... T>
CUTE_HOST_DEVICE constexpr
decltype(auto)
get(tuple<T...>&& t) noexcept
{
static_assert(I < sizeof...(T), "Index out of range");
return detail::getv<I>(static_cast<tuple<T...>&&>(t));
}
//
// find a type X within a cute::tuple
// Requires X to be unique in tuple
// Returns a static integer
//
template <class X, class... T>
CUTE_HOST_DEVICE constexpr
auto
find(tuple<T...> const& t) noexcept
{
return detail::findt<X>(t);
}
//
// Custom is_tuple trait simply checks the existence of tuple_size
// and assumes std::get<I>(.), std::tuple_element<I,.>
//
namespace detail {
template <class T>
auto has_tuple_size( T*) -> bool_constant<(0 <= tuple_size<T>::value)>;
auto has_tuple_size(...) -> false_type;
} // end namespace detail
template <class T>
struct is_tuple : decltype(detail::has_tuple_size((T*)0)) {};
//
// make_tuple (value-based implementation)
//
template <class... T>
CUTE_HOST_DEVICE constexpr
tuple<T...>
make_tuple(T const&... t)
{
return {t...};
}
//
// tuple_cat concatenates multiple cute::tuple into a single cute::tuple,
// just like std::tuple_cat for std::tuple.
//
#if 0
// Original implementation
namespace detail {
template <class T0, class T1,
size_t... I0, size_t... I1>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1,
index_sequence<I0...>, index_sequence<I1...>)
{
return cute::make_tuple(get<I0>(t0)..., get<I1>(t1)...);
}
} // end namespace detail
CUTE_HOST_DEVICE constexpr
tuple<>
tuple_cat()
{
return {};
}
template <class Tuple,
__CUTE_REQUIRES(is_tuple<Tuple>::value)>
CUTE_HOST_DEVICE constexpr
Tuple const&
tuple_cat(Tuple const& t)
{
return t;
}
template <class T0, class T1>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1)
{
return detail::tuple_cat(t0, t1,
make_index_sequence<tuple_size<T0>::value>{},
make_index_sequence<tuple_size<T1>::value>{});
}
template <class T0, class T1, class T2, class... Ts>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1, T2 const& t2, Ts const&... ts)
{
return cute::tuple_cat(cute::tuple_cat(t0,t1),t2,ts...);
}
#endif
#if 1
// Extended implementation
namespace detail {
template <class T0, class T1,
size_t... I0, size_t... I1>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1,
index_sequence<I0...>, index_sequence<I1...>)
{
return cute::make_tuple(get<I0>(t0)..., get<I1>(t1)...);
}
template <class T0, class T1, class T2,
size_t... I0, size_t... I1, size_t... I2>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1, T2 const& t2,
index_sequence<I0...>, index_sequence<I1...>, index_sequence<I2...>)
{
return cute::make_tuple(get<I0>(t0)..., get<I1>(t1)..., get<I2>(t2)...);
}
template <class T0, class T1, class T2, class T3,
size_t... I0, size_t... I1, size_t... I2, size_t... I3>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1, T2 const& t2, T3 const& t3,
index_sequence<I0...>, index_sequence<I1...>, index_sequence<I2...>, index_sequence<I3...>)
{
return cute::make_tuple(get<I0>(t0)..., get<I1>(t1)..., get<I2>(t2)..., get<I3>(t3)...);
}
template <class T0, class T1, class T2, class T3, class T4,
size_t... I0, size_t... I1, size_t... I2, size_t... I3, size_t... I4>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1, T2 const& t2, T3 const& t3, T4 const& t4,
index_sequence<I0...>, index_sequence<I1...>, index_sequence<I2...>, index_sequence<I3...>, index_sequence<I4...>)
{
return cute::make_tuple(get<I0>(t0)..., get<I1>(t1)..., get<I2>(t2)..., get<I3>(t3)..., get<I4>(t4)...);
}
template <class T0, class T1>
struct tuple_cat_static;
template <class... T0s, class... T1s>
struct tuple_cat_static<tuple<T0s...>, tuple<T1s...>> {
using type = tuple<T0s..., T1s...>;
};
} // end namespace detail
CUTE_HOST_DEVICE constexpr
tuple<>
tuple_cat()
{
return {};
}
template <class Tuple,
__CUTE_REQUIRES(is_tuple<Tuple>::value)>
CUTE_HOST_DEVICE constexpr
Tuple const&
tuple_cat(Tuple const& t)
{
return t;
}
template <class T0, class T1>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1)
{
if constexpr (is_static<T0>::value && is_static<T1>::value &&
is_tuple<T0>::value && is_tuple<T1>::value) {
return typename detail::tuple_cat_static<T0, T1>::type{};
} else {
return detail::tuple_cat(t0, t1,
make_index_sequence<tuple_size<T0>::value>{},
make_index_sequence<tuple_size<T1>::value>{});
}
CUTE_GCC_UNREACHABLE;
}
template <class T0, class T1, class T2>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1, T2 const& t2)
{
return detail::tuple_cat(t0, t1, t2,
make_index_sequence<tuple_size<T0>::value>{},
make_index_sequence<tuple_size<T1>::value>{},
make_index_sequence<tuple_size<T2>::value>{});
}
template <class T0, class T1, class T2, class T3>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1, T2 const& t2, T3 const& t3)
{
return detail::tuple_cat(t0, t1, t2, t3,
make_index_sequence<tuple_size<T0>::value>{},
make_index_sequence<tuple_size<T1>::value>{},
make_index_sequence<tuple_size<T2>::value>{},
make_index_sequence<tuple_size<T3>::value>{});
}
template <class T0, class T1, class T2, class T3, class T4>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1, T2 const& t2, T3 const& t3, T4 const& t4)
{
return detail::tuple_cat(t0, t1, t2, t3, t4,
make_index_sequence<tuple_size<T0>::value>{},
make_index_sequence<tuple_size<T1>::value>{},
make_index_sequence<tuple_size<T2>::value>{},
make_index_sequence<tuple_size<T3>::value>{},
make_index_sequence<tuple_size<T4>::value>{});
}
template <class T0, class T1, class T2, class T3, class T4, class T5, class... Ts>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1, T2 const& t2, T3 const& t3, T4 const& t4, T5 const& t5, Ts const&... ts)
{
return cute::tuple_cat(cute::tuple_cat(t0,t1,t2,t3,t4), cute::tuple_cat(t5, ts...));
}
#endif
#if 0
// Outer-Inner indexing trick to concat all tuples at once
namespace detail {
template <size_t... Ns>
struct tuple_cat_helper
{
static constexpr cute::array<size_t,sizeof...(Ns)> ns = {Ns...};
static constexpr size_t total_size() {
size_t sum = 0;
for (size_t n : ns) sum += n;
return sum;
}
static constexpr size_t total_size_ = total_size();
static constexpr auto values() {
cute::array<size_t[2],total_size_> outer_inner = {};
size_t idx = 0;
for (size_t i = 0; i < ns.size(); ++i) {
for (size_t j = 0; j < ns[i]; ++j, ++idx) {
outer_inner[idx][0] = i;
outer_inner[idx][1] = j;
}
}
return outer_inner;
}
static constexpr auto outer_inner_ = values();
using total_sequence = make_index_sequence<total_size_>;
};
template <class Helper, class Tuple, size_t... I>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(Tuple const& t, index_sequence<I...>)
{
return cute::make_tuple(get<Helper::outer_inner_[I][1]>(get<Helper::outer_inner_[I][0]>(t))...);
}
template <class T0, class T1,
size_t... I0, size_t... I1>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1,
index_sequence<I0...>, index_sequence<I1...>)
{
return cute::make_tuple(get<I0>(t0)..., get<I1>(t1)...);
}
} // end namespace detail
CUTE_HOST_DEVICE constexpr
tuple<>
tuple_cat()
{
return {};
}
template <class Tuple,
__CUTE_REQUIRES(is_tuple<Tuple>::value)>
CUTE_HOST_DEVICE constexpr
Tuple const&
tuple_cat(Tuple const& t)
{
return t;
}
template <class T0, class T1>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(T0 const& t0, T1 const& t1)
{
return detail::tuple_cat(t0, t1,
make_index_sequence<tuple_size<T0>::value>{},
make_index_sequence<tuple_size<T1>::value>{});
}
template <class... Tuples>
CUTE_HOST_DEVICE constexpr
auto
tuple_cat(Tuples const&... ts)
{
using Helper = detail::tuple_cat_helper<tuple_size<Tuples>::value...>;
return detail::tuple_cat<Helper>(cute::make_tuple(ts...), typename Helper::total_sequence{});
}
#endif
//
// Equality operators
//
namespace detail {
template <size_t I, class TupleA, class TupleB>
CUTE_HOST_DEVICE constexpr
auto
equal_impl(TupleA const& a, TupleB const& b)
{
if constexpr (I == tuple_size<TupleA>::value) {
return cute::true_type{}; // Terminal: TupleA is exhausted
} else if constexpr (I == tuple_size<TupleB>::value) {
return cute::false_type{}; // Terminal: TupleA is not exhausted, TupleB is exhausted
} else {
return (get<I>(a) == get<I>(b)) && equal_impl<I+1>(a,b);
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
template <class TupleT, class TupleU,
__CUTE_REQUIRES(is_tuple<TupleT>::value && is_tuple<TupleU>::value)>
CUTE_HOST_DEVICE constexpr
auto
operator==(TupleT const& t, TupleU const& u)
{
return detail::equal_impl<0>(t, u);
}
template <class TupleT, class TupleU,
__CUTE_REQUIRES(is_tuple<TupleT>::value ^ is_tuple<TupleU>::value)>
CUTE_HOST_DEVICE constexpr
auto
operator==(TupleT const& t, TupleU const& u)
{
return cute::false_type{};
}
template <class TupleT, class TupleU,
__CUTE_REQUIRES(is_tuple<TupleT>::value && is_tuple<TupleU>::value)>
CUTE_HOST_DEVICE constexpr
auto
operator!=(TupleT const& t, TupleU const& u)
{
return !(t == u);
}
template <class TupleT, class TupleU,
__CUTE_REQUIRES(is_tuple<TupleT>::value ^ is_tuple<TupleU>::value)>
CUTE_HOST_DEVICE constexpr
auto
operator!=(TupleT const& t, TupleU const& u)
{
return cute::true_type{};
}
//
// Comparison operators
//
//
// There are many ways to compare tuple of elements and because CuTe is built
// on parameterizing layouts of coordinates, some comparisons are appropriate
// only in certain cases.
// -- lexicographical comparison [reverse, reflected, revref]
// -- colexicographical comparison [reverse, reflected, revref]
// -- element-wise comparison [any,all]
// This can be very confusing. To avoid errors in selecting the appropriate
// comparison, op<|op<=|op>|op>= are *not* implemented for cute::tuple.
//
// That said, see int_tuple for more explicitly named common comparison ops.
//
//
// Display utilities
//
namespace detail {
template <class Tuple, size_t... Is>
CUTE_HOST_DEVICE void print_tuple(Tuple const& t,
index_sequence<Is...>, char s = '(', char e = ')')
{
using cute::print;
((void(print(Is == 0 ? s : ',')), void(print(get<Is>(t)))), ...); print(e);
}
#if !defined(__CUDACC_RTC__)
template <class Tuple, std::size_t... Is>
CUTE_HOST std::ostream& print_tuple_os(std::ostream& os, Tuple const& t,
index_sequence<Is...>, char s = '(', char e = ')')
{
(void(os << (Is == 0 ? s : ',') << get<Is>(t)), ...);
return os << e;
}
#endif // !defined(__CUDACC_RTC__)
} // end namespace detail
template <class Tuple,
__CUTE_REQUIRES(is_tuple<Tuple>::value)>
CUTE_HOST_DEVICE void print(Tuple const& t)
{
return detail::print_tuple(t, make_index_sequence<tuple_size<Tuple>::value>{});
}
#if !defined(__CUDACC_RTC__)
template <class Tuple,
__CUTE_REQUIRES(is_tuple<Tuple>::value)>
CUTE_HOST std::ostream& operator<<(std::ostream& os, Tuple const& t)
{
return detail::print_tuple_os(os, t, make_index_sequence<tuple_size<Tuple>::value>{});
}
#endif // !defined(__CUDACC_RTC__)
} // end namespace cute
namespace CUTE_STL_NAMESPACE
{
template <class... T>
struct tuple_size<cute::tuple<T...>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, sizeof...(T)>
{};
template <size_t I, class... T>
struct tuple_element<I, cute::tuple<T...>>
: CUTE_STL_NAMESPACE::tuple_element<I, CUTE_STL_NAMESPACE::tuple<T...>>
{};
template <class... T>
struct tuple_size<const cute::tuple<T...>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, sizeof...(T)>
{};
template <size_t I, class... T>
struct tuple_element<I, const cute::tuple<T...>>
: CUTE_STL_NAMESPACE::tuple_element<I, const CUTE_STL_NAMESPACE::tuple<T...>>
{};
} // end namespace CUTE_STL_NAMESPACE
//
// std compatibility
//
#ifdef CUTE_STL_NAMESPACE_IS_CUDA_STD
namespace std
{
#if defined(__CUDACC_RTC__)
template <class... _Tp>
struct tuple_size;
template <size_t _Ip, class... _Tp>
struct tuple_element;
#endif
template <class... T>
struct tuple_size<cute::tuple<T...>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, sizeof...(T)>
{};
template <size_t I, class... T>
struct tuple_element<I, cute::tuple<T...>>
: CUTE_STL_NAMESPACE::tuple_element<I, CUTE_STL_NAMESPACE::tuple<T...>>
{};
template <class... T>
struct tuple_size<const cute::tuple<T...>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, sizeof...(T)>
{};
template <size_t I, class... T>
struct tuple_element<I, const cute::tuple<T...>>
: CUTE_STL_NAMESPACE::tuple_element<I, const CUTE_STL_NAMESPACE::tuple<T...>>
{};
} // end namepsace std
#endif // CUTE_STL_NAMESPACE_IS_CUDA_STD
|