Spaces:
Sleeping
Sleeping
File size: 29,029 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/container/tuple.hpp>
#include <cute/container/array.hpp>
#include <cute/algorithm/tuple_algorithms.hpp>
#include <cute/numeric/integral_constant.hpp>
/** IntTuple is an integer or a tuple of IntTuples.
* This file holds utilities for working with IntTuples,
* but does not hold a concrete concept or class of IntTuple.
*/
namespace cute
{
// Implementation of get<0>(Integral).
// Even though is_tuple<Integral> is false and tuple_size<Integral> doesn't compile,
// CuTe defines rank(Integral) as 1, so it's useful for get<0>(Integral) to return its input
template <size_t I, class T, __CUTE_REQUIRES(cute::is_integral<cute::remove_cvref_t<T>>::value)>
CUTE_HOST_DEVICE constexpr
decltype(auto)
get(T&& t) noexcept
{
static_assert(I == 0, "Index out of range");
return static_cast<T&&>(t);
}
// Custom recursive get for anything that implements get<I>(.) (for a single integer I).
template <size_t I0, size_t I1, size_t... Is, class T>
CUTE_HOST_DEVICE constexpr
decltype(auto)
get(T&& t) noexcept
{
return get<I1, Is...>(get<I0>(static_cast<T&&>(t)));
}
//
// rank
//
template <int... Is, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
rank(IntTuple const& t)
{
if constexpr (sizeof...(Is) == 0) {
if constexpr (is_tuple<IntTuple>::value) {
return Int<tuple_size<IntTuple>::value>{};
} else {
return Int<1>{};
}
} else {
return rank(get<Is...>(t));
}
CUTE_GCC_UNREACHABLE;
}
template <class IntTuple>
using rank_t = decltype(rank(declval<IntTuple>()));
template <class IntTuple>
static constexpr int rank_v = rank_t<IntTuple>::value;
//
// shape
//
template <class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
shape(IntTuple const& s)
{
if constexpr (is_tuple<IntTuple>::value) {
return transform(s, [](auto const& a) { return shape(a); });
} else {
return s;
}
CUTE_GCC_UNREACHABLE;
}
template <int I, int... Is, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
shape(IntTuple const& s)
{
if constexpr (is_tuple<IntTuple>::value) {
return shape<Is...>(get<I>(s));
} else {
return get<I,Is...>(shape(s));
}
CUTE_GCC_UNREACHABLE;
}
//
// max
//
template <class T0, class... Ts>
CUTE_HOST_DEVICE constexpr
auto
max(T0 const& t0, Ts const&... ts)
{
if constexpr (is_tuple<T0>::value) {
return cute::max(cute::apply(t0, [](auto const&... a){ return cute::max(a...); }), ts...);
} else if constexpr (sizeof...(Ts) == 0) {
return t0;
} else {
return cute::max(t0, cute::max(ts...));
}
CUTE_GCC_UNREACHABLE;
}
//
// min
//
template <class T0, class... Ts>
CUTE_HOST_DEVICE constexpr
auto
min(T0 const& t0, Ts const&... ts)
{
if constexpr (is_tuple<T0>::value) {
return cute::min(cute::apply(t0, [](auto const&... a){ return cute::min(a...); }), ts...);
} else if constexpr (sizeof...(Ts) == 0) {
return t0;
} else {
return cute::min(t0, cute::min(ts...));
}
CUTE_GCC_UNREACHABLE;
}
//
// gcd
//
template <class T0, class... Ts>
CUTE_HOST_DEVICE constexpr
auto
gcd(T0 const& t0, Ts const&... ts)
{
if constexpr (is_tuple<T0>::value) {
return cute::gcd(cute::apply(t0, [](auto const&... a){ return cute::gcd(a...); }), ts...);
} else if constexpr (sizeof...(Ts) == 0) {
return t0;
} else {
return cute::gcd(t0, cute::gcd(ts...));
}
CUTE_GCC_UNREACHABLE;
}
//
// depth
//
template <int... Is, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
depth(IntTuple const& t)
{
if constexpr (sizeof...(Is) == 0) {
if constexpr (is_tuple<IntTuple>::value) {
return Int<1>{} + cute::apply(t, [](auto const&... v){ return cute::max(depth(v)...); });
} else {
return Int<0>{};
}
} else {
return depth(get<Is...>(t));
}
CUTE_GCC_UNREACHABLE;
}
template <class Tuple>
using depth_t = decltype(depth(declval<Tuple>()));
template <class Tuple>
static constexpr int depth_v = depth_t<Tuple>::value;
//
// product
//
// Implementation of product as a function object
struct Product
{
template <class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
operator()(IntTuple const& a) const
{
if constexpr (is_tuple<IntTuple>::value) {
if constexpr (tuple_size<IntTuple>::value == 0) {
return Int<1>{};
} else {
return cute::transform_apply(a, Product{}, multiplies_unary_lfold{});
}
} else if constexpr (cute::is_integral<IntTuple>::value) {
return a;
}
CUTE_GCC_UNREACHABLE;
}
};
// Callable product function object
CUTE_INLINE_CONSTANT Product product;
// Return a rank(t) tuple @a result such that get<i>(@a result) = product(get<i>(@a t))
template <class Tuple>
CUTE_HOST_DEVICE constexpr
auto
product_each(Tuple const& t)
{
return transform(wrap(t), product);
}
// Take the product of Tuple at the leaves of TupleG
template <class Tuple, class TupleG>
CUTE_HOST_DEVICE constexpr
auto
product_like(Tuple const& tuple, TupleG const& guide)
{
return transform_leaf(guide, tuple, [](auto const& g, auto const& t) { return product(t); });
}
// Return the product of elements in a mode
template <int... Is, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
size(IntTuple const& a)
{
if constexpr (sizeof...(Is) == 0) {
return product(a);
} else {
return size(get<Is...>(a));
}
CUTE_GCC_UNREACHABLE;
}
template <class IntTuple>
static constexpr int size_v = decltype(size(declval<IntTuple>()))::value;
//
// sum
//
template <class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
sum(IntTuple const& a)
{
if constexpr (is_tuple<IntTuple>::value) {
return cute::apply(a, [](auto const&... v){ return (Int<0>{} + ... + sum(v)); });
} else {
return a;
}
CUTE_GCC_UNREACHABLE;
}
//
// inner_product
//
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
inner_product(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
static_assert(tuple_size<IntTupleA>::value == tuple_size<IntTupleB>::value, "Mismatched ranks");
return transform_apply(a, b, [](auto const& x, auto const& y) { return inner_product(x,y); },
[](auto const&... v) { return (Int<0>{} + ... + v); });
} else {
return a * b;
}
CUTE_GCC_UNREACHABLE;
}
//
// ceil_div
//
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
ceil_div(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value) {
if constexpr (is_tuple<IntTupleB>::value) { // tuple tuple
static_assert(tuple_size<IntTupleA>::value >= tuple_size<IntTupleB>::value, "Mismatched ranks");
constexpr int R = tuple_size<IntTupleA>::value; // Missing ranks in TupleB are implicitly 1
return transform(a, append<R>(b,Int<1>{}), [](auto const& x, auto const& y) { return ceil_div(x,y); });
} else { // tuple int
auto const [result, rest] = fold(a, cute::make_tuple(cute::make_tuple(), b),
[] (auto const& init, auto const& ai) {
return cute::make_tuple(append(get<0>(init), ceil_div(ai, get<1>(init))), ceil_div(get<1>(init), ai));
});
return result;
}
} else
if constexpr (is_tuple<IntTupleB>::value) { // int tuple
return ceil_div(a, product(b));
} else {
return (a + b - Int<1>{}) / b;
}
CUTE_GCC_UNREACHABLE;
}
//
// round_up
// Round @a a up to the nearest multiple of @a b.
// For negative numbers, rounds away from zero.
//
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
round_up(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
static_assert(tuple_size<IntTupleA>::value >= tuple_size<IntTupleB>::value, "Mismatched ranks");
constexpr int R = tuple_size<IntTupleA>::value; // Missing ranks in TupleB are implicitly 1
return transform(a, append<R>(b,Int<1>{}), [](auto const& x, auto const& y) { return round_up(x,y); });
} else {
return ((a + b - Int<1>{}) / b) * b;
}
CUTE_GCC_UNREACHABLE;
}
/** Division for Shapes
* Case Tuple Tuple:
* Perform shape_div element-wise
* Case Tuple Int:
* Fold the division of b across each element of a
* Example: shape_div((4,5,6),40) -> shape_div((1,5,6),10) -> shape_div((1,1,6),2) -> (1,1,3)
* Case Int Tuple:
* Return shape_div(a, product(b))
* Case Int Int:
* Enforce the divisibility condition a % b == 0 || b % a == 0 when possible
* Return a / b with rounding away from 0 (that is, 1 or -1 when a < b)
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
shape_div(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value) {
if constexpr (is_tuple<IntTupleB>::value) { // tuple tuple
static_assert(tuple_size<IntTupleA>::value == tuple_size<IntTupleB>::value, "Mismatched ranks");
return transform(a, b, [](auto const& x, auto const& y) { return shape_div(x,y); });
} else { // tuple int
auto const [result, rest] = fold(a, cute::make_tuple(cute::make_tuple(), b),
[] (auto const& init, auto const& ai) {
return cute::make_tuple(append(get<0>(init), shape_div(ai, get<1>(init))), shape_div(get<1>(init), ai));
});
return result;
}
} else
if constexpr (is_tuple<IntTupleB>::value) { // int tuple
return shape_div(a, product(b));
} else
if constexpr (is_static<IntTupleA>::value && is_static<IntTupleB>::value) {
static_assert(IntTupleA::value % IntTupleB::value == 0 || IntTupleB::value % IntTupleA::value == 0, "Static shape_div failure");
return C<shape_div(IntTupleA::value, IntTupleB::value)>{};
} else { // int int
//assert(a % b == 0 || b % a == 0); // Waive dynamic assertion
return a / b != 0 ? a / b : signum(a) * signum(b); // Division with rounding away from zero
}
CUTE_GCC_UNREACHABLE;
}
/** Minimum for Shapes
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
shape_min(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value || is_tuple<IntTupleB>::value) {
static_assert(dependent_false<IntTupleA>, "Not implemented.");
} else
if constexpr (is_constant<1, IntTupleA>::value || is_constant<1, IntTupleB>::value) {
return Int<1>{}; // _1 is less than all other shapes, preserve static
} else {
return cute::min(a, b);
}
CUTE_GCC_UNREACHABLE;
}
/** Return a tuple the same profile as A scaled by corresponding elements in B
*/
template <class A, class B>
CUTE_HOST_DEVICE constexpr
auto
elem_scale(A const& a, B const& b)
{
if constexpr (is_tuple<A>::value) {
return transform(a, b, [](auto const& x, auto const& y) { return elem_scale(x,y); });
} else {
return a * product(b);
}
CUTE_GCC_UNREACHABLE;
}
/** Test if two IntTuple have the same profile (hierarchical rank division)
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
congruent(IntTupleA const& a, IntTupleB const& b)
{
return bool_constant<is_same<decltype(repeat_like(shape(a),_0{})),
decltype(repeat_like(shape(b),_0{}))>::value>{};
}
template <class A, class B>
using is_congruent = decltype(congruent(declval<A>(), declval<B>()));
/** Test if two IntTuple have the similar profiles up to Shape A (hierarchical rank division)
* weakly_congruent is a partial order on A and B: A <= B
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
weakly_congruent(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
if constexpr (tuple_size<IntTupleA>::value != tuple_size<IntTupleB>::value) {
return false_type{};
} else {
return transform_apply(a, b, [](auto const& x, auto const& y) { return weakly_congruent(x,y); },
[](auto const&... z) { return (true_type{} && ... && z); });
}
} else if constexpr (is_integral<IntTupleA>::value) {
return true_type{};
} else if constexpr (is_integral<IntTupleB>::value) {
return false_type{};
} else {
return weakly_congruent(shape(a), shape(b));
}
CUTE_GCC_UNREACHABLE;
}
template <class A, class B>
using is_weakly_congruent = decltype(weakly_congruent(declval<A>(), declval<B>()));
/** Test if Shape A is compatible with Shape B:
* the size of A and B are the same, and
* any coordinate into A can also be used as a coordinate into B
* compatible is a partial order on A and B: A <= B
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
compatible(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
if constexpr (tuple_size<IntTupleA>::value != tuple_size<IntTupleB>::value) {
return false_type{};
} else {
return transform_apply(a, b, [](auto const& x, auto const& y) { return compatible(x,y); },
[](auto const&... z) { return (true_type{} && ... && z); });
}
} else if constexpr (is_integral<IntTupleA>::value) {
return a == size(b);
} else if constexpr (is_integral<IntTupleB>::value) {
return false_type{};
} else {
return compatible(shape(a), shape(b));
}
CUTE_GCC_UNREACHABLE;
}
template <class A, class B>
using is_compatible = decltype(compatible(declval<A>(), declval<B>()));
/** Test if Shape A is weakly compatible with Shape B:
* there exists a Shape C congruent to A such that compatible(elem_scale(A,C), B)
* weakly_compatible is a partial order on A and B: A <= B
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
weakly_compatible(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
if constexpr (tuple_size<IntTupleA>::value != tuple_size<IntTupleB>::value) {
return false_type{};
} else {
return transform_apply(a, b, [](auto const& x, auto const& y) { return weakly_compatible(x,y); },
[](auto const&... z) { return (true_type{} && ... && z); });
}
} else if constexpr (is_integral<IntTupleA>::value) {
return size(b) % a == Int<0>{};
} else if constexpr (is_integral<IntTupleB>::value) {
return false_type{};
} else {
return weakly_compatible(shape(a), shape(b));
}
CUTE_GCC_UNREACHABLE;
}
template <class A, class B>
using is_weakly_compatible = decltype(weakly_compatible(declval<A>(), declval<B>()));
/** Replace the elements of Tuple B that are paired with an Int<0> with an Int<1>
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
filter_zeros(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value) {
return transform(a, b, [](auto const& x, auto const& y) { return filter_zeros(x,y); });
} else if constexpr (is_constant<0, IntTupleA>::value) {
return Int<1>{};
} else {
return b;
}
CUTE_GCC_UNREACHABLE;
}
template <class Tuple>
CUTE_HOST_DEVICE constexpr
auto
filter_zeros(Tuple const& t)
{
return filter_zeros(t, t);
}
//
// Converters and constructors with arrays and params
//
/** Make an IntTuple of rank N from an Indexable array.
* Access elements up to a dynamic index n, then use init (requires compatible types)
* Consider cute::take<B,E> if all indexing is known to be valid
* \code
* std::vector<int> a = {6,3,4};
* auto tup = make_int_tuple<5>(a, a.size(), 0) // (6,3,4,0,0)
* \endcode
*/
template <int N, class Indexable, class T>
CUTE_HOST_DEVICE constexpr
auto
make_int_tuple(Indexable const& t, int n, T const& init)
{
static_assert(N > 0);
if constexpr (N == 1) {
return 0 < n ? t[0] : init;
} else {
return transform(make_seq<N>{}, [&](auto i) { return i < n ? t[i] : init; });
}
CUTE_GCC_UNREACHABLE;
}
/** Fill the dynamic values of a Tuple with values from another Tuple
* \code
* auto params = make_tuple(6,3,4);
* cute::tuple<Int<1>, cute::tuple<int, int, Int<3>>, int, Int<2>> result;
* fill_int_tuple_from(result, params); // (_1,(6,3,_3),4,_2)
* \endcode
*/
template <class Tuple, class TupleV>
CUTE_HOST_DEVICE constexpr
auto
fill_int_tuple_from(Tuple& result, TupleV const& vals)
{
return fold(result, vals, [](auto const& init, auto&& r) {
if constexpr (is_static<remove_cvref_t<decltype(r)>>::value) { // Skip static elements of result
return init;
} else if constexpr (is_tuple<remove_cvref_t<decltype(r)>>::value) { // Recurse into tuples
return fill_int_tuple_from(r, init);
} else { // Assign and consume arg
static_assert(tuple_size<remove_cvref_t<decltype(init)>>::value > 0, "Not enough values to fill with!");
r = get<0>(init);
return remove<0>(init);
}
CUTE_GCC_UNREACHABLE;
});
}
/** Make a "Tuple" by filling in the dynamic values in order from the arguments
* \code
* using result_t = cute::tuple<Int<1>, cute::tuple<int, int, Int<3>>, int, Int<2>>;
* auto result = make_int_tuple_from<result_t>(6,3,4); // (_1,(6,3,_3),4,_2)
* \endcode
*/
template <class Tuple, class... Ts>
CUTE_HOST_DEVICE constexpr
Tuple
make_int_tuple_from(Ts const&... ts)
{
Tuple result = Tuple{};
fill_int_tuple_from(result, cute::make_tuple(ts...));
return result;
}
/** Convert a tuple to a flat homogeneous array of type T
* \code
* auto tup = cute::make_tuple(Int<1>{}, cute::make_tuple(6,3,Int<3>{}),4,Int<2>{});
* cute::array<uint64_t,6> result = to_array<uint64_t>(tup); // [1,6,3,3,4,2]
* \endcode
*/
template <class T = int64_t, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
to_array(IntTuple const& t)
{
auto flat_t = flatten_to_tuple(t);
constexpr int N = tuple_size<decltype(flat_t)>::value;
cute::array<T,N> result;
for_each(make_seq<N>{}, [&] (auto i) { result[i] = get<i>(flat_t); });
return result;
}
//
// Comparison operators
//
//
// There are many ways to compare tuple of elements and because CuTe is built
// on parameterizing layouts of coordinates, some comparisons are appropriate
// only in certain cases.
// -- lexicographical comparison [reverse, reflected, revref] : Correct for coords in RowMajor Layout
// -- colexicographical comparison [reverse, reflected, revref] : Correct for coords in ColMajor Layout
// -- element-wise comparison [any,all] :
// This can be very confusing. To avoid errors in selecting the appropriate
// comparison, op<|op<=|op>|op>= are *not* implemented for cute::tuple.
//
// When actually desiring to order coordinates, the user should map them to
// their indices within the Layout they came from:
// e.g. layoutX(coordA) < layoutX(coordB)
// That said, we implement the three most common ways to compare tuples below.
// These are implemented with slighly more explicit names than op<.
//
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
lex_less(IntTupleA const& a, IntTupleB const& b);
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
colex_less(IntTupleA const& a, IntTupleB const& b);
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
elem_less(IntTupleA const& a, IntTupleB const& b);
namespace detail {
template <size_t I, class TupleA, class TupleB>
CUTE_HOST_DEVICE constexpr
auto
lex_less_impl(TupleA const& a, TupleB const& b)
{
if constexpr (I == tuple_size<TupleB>::value) {
return cute::false_type{}; // Terminal: TupleB is exhausted
} else if constexpr (I == tuple_size<TupleA>::value) {
return cute::true_type{}; // Terminal: TupleA is exhausted, TupleB is not exhausted
} else {
return lex_less(get<I>(a), get<I>(b)) || (get<I>(a) == get<I>(b) && lex_less_impl<I+1>(a,b));
}
CUTE_GCC_UNREACHABLE;
}
template <size_t I, class TupleA, class TupleB>
CUTE_HOST_DEVICE constexpr
auto
colex_less_impl(TupleA const& a, TupleB const& b)
{
if constexpr (I == tuple_size<TupleB>::value) {
return cute::false_type{}; // Terminal: TupleB is exhausted
} else if constexpr (I == tuple_size<TupleA>::value) {
return cute::true_type{}; // Terminal: TupleA is exhausted, TupleB is not exhausted
} else {
constexpr size_t A = tuple_size<TupleA>::value - 1 - I;
constexpr size_t B = tuple_size<TupleB>::value - 1 - I;
return colex_less(get<A>(a), get<B>(b)) || (get<A>(a) == get<B>(b) && colex_less_impl<I+1>(a,b));
}
CUTE_GCC_UNREACHABLE;
}
template <size_t I, class TupleA, class TupleB>
CUTE_HOST_DEVICE constexpr
auto
elem_less_impl(TupleA const& a, TupleB const& b)
{
if constexpr (I == tuple_size<TupleA>::value) {
return cute::true_type{}; // Terminal: TupleA is exhausted
} else if constexpr (I == tuple_size<TupleB>::value) {
return cute::false_type{}; // Terminal: TupleA is not exhausted, TupleB is exhausted
} else {
return elem_less(get<I>(a), get<I>(b)) && elem_less_impl<I+1>(a,b);
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
// Lexicographical comparison
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
lex_less(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
return detail::lex_less_impl<0>(a, b);
} else {
return a < b;
}
CUTE_GCC_UNREACHABLE;
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
lex_leq(T const& t, U const& u) {
return !lex_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
lex_gtr(T const& t, U const& u) {
return lex_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
lex_geq(T const& t, U const& u) {
return !lex_less(t, u);
}
// Colexicographical comparison
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
colex_less(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
return detail::colex_less_impl<0>(a, b);
} else {
return a < b;
}
CUTE_GCC_UNREACHABLE;
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
colex_leq(T const& t, U const& u) {
return !colex_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
colex_gtr(T const& t, U const& u) {
return colex_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
colex_geq(T const& t, U const& u) {
return !colex_less(t, u);
}
// Elementwise [all] comparison
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
elem_less(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
return detail::elem_less_impl<0>(a, b);
} else {
return a < b;
}
CUTE_GCC_UNREACHABLE;
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
elem_leq(T const& t, U const& u) {
return !elem_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
elem_gtr(T const& t, U const& u) {
return elem_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
elem_geq(T const& t, U const& u) {
return !elem_less(t, u);
}
namespace detail {
/** Increment a (dynamic) coord lexicographically within a shape
* @pre is_congruent<Coord,Shape>::value
* \code
* auto shape = make_shape(1,2,make_shape(2,3),3);
*
* int i = 0;
* for (auto coord = repeat_like(shape, 0); back(coord) != back(shape); increment(coord, shape)) {
* std::cout << i++ << ": " << coord << std::endl;
* }
* assert(i == size(shape));
* \endcode
*/
template <int I = 0, class Coord, class Shape>
CUTE_HOST_DEVICE constexpr
void
increment(Coord& coord, Shape const& shape)
{
if constexpr (is_integral<Coord>::value) {
++coord;
} else {
increment(get<I>(coord), get<I>(shape));
if constexpr (I+1 < tuple_size<Coord>::value) {
if (back(get<I>(coord)) == back(get<I>(shape))) {
back(get<I>(coord)) = 0;
increment<I+1>(coord, shape);
}
}
}
}
} // end namespace detail
struct ForwardCoordIteratorSentinal
{};
// A forward iterator for a starting coordinate in a shape's domain, and a shape.
// The starting coordinate may be zero but need not necessarily be.
template <class Coord, class Shape>
struct ForwardCoordIterator
{
static_assert(is_congruent<Coord, Shape>::value);
CUTE_HOST_DEVICE constexpr
Coord const& operator*() const { return coord; }
CUTE_HOST_DEVICE constexpr
ForwardCoordIterator& operator++() { detail::increment(coord, shape); return *this; }
// Sentinel for the end of the implied range
CUTE_HOST_DEVICE constexpr
bool operator< (ForwardCoordIteratorSentinal const&) const { return back(coord) < back(shape); }
CUTE_HOST_DEVICE constexpr
bool operator==(ForwardCoordIteratorSentinal const&) const { return back(coord) == back(shape); }
CUTE_HOST_DEVICE constexpr
bool operator!=(ForwardCoordIteratorSentinal const&) const { return back(coord) != back(shape); }
// NOTE: These are expensive, avoid use
CUTE_HOST_DEVICE constexpr
bool operator< (ForwardCoordIterator const& other) const { return colex_less(coord, other.coord); }
CUTE_HOST_DEVICE constexpr
bool operator==(ForwardCoordIterator const& other) const { return coord == other.coord; }
CUTE_HOST_DEVICE constexpr
bool operator!=(ForwardCoordIterator const& other) const { return coord != other.coord; }
Coord coord;
Shape const& shape;
};
// A forward iterator for a coordinate that starts from a provided coordinate
template <class Shape, class Coord>
CUTE_HOST_DEVICE constexpr
auto
make_coord_iterator(Coord const& coord, Shape const& shape)
{
return ForwardCoordIterator<Coord,Shape>{coord,shape};
}
// A forward iterator for a coordinate that starts from zero
template <class Shape>
CUTE_HOST_DEVICE constexpr
auto
make_coord_iterator(Shape const& shape)
{
auto coord = repeat_like(shape, int(0));
return make_coord_iterator(coord, shape);
}
} // end namespace cute
|