Spaces:
Sleeping
Sleeping
File size: 63,552 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/underscore.hpp>
#include <cute/int_tuple.hpp>
#include <cute/stride.hpp>
#include <cute/numeric/arithmetic_tuple.hpp>
#include <cute/numeric/integral_ratio.hpp>
#include <cute/numeric/integral_constant.hpp>
namespace cute
{
// Aliases
template <class... Shapes>
using Shape = cute::tuple<Shapes...>;
template <class... Strides>
using Stride = cute::tuple<Strides...>;
template <class... Strides>
using Step = cute::tuple<Strides...>;
template <class... Coords>
using Coord = cute::tuple<Coords...>;
template <class... Layouts>
using Tile = cute::tuple<Layouts...>;
template <class... Ts>
CUTE_HOST_DEVICE constexpr
Shape<Ts...>
make_shape(Ts const&... t) {
return {t...};
}
template <class... Ts>
CUTE_HOST_DEVICE constexpr
Stride<Ts...>
make_stride(Ts const&... t) {
return {t...};
}
template <class... Ts>
CUTE_HOST_DEVICE constexpr
Step<Ts...>
make_step(Ts const&... t) {
return {t...};
}
template <class... Ts>
CUTE_HOST_DEVICE constexpr
Coord<Ts...>
make_coord(Ts const&... t) {
return {t...};
}
template <class... Ts>
CUTE_HOST_DEVICE constexpr
Tile<Ts...>
make_tile(Ts const&... t)
{
return {t...};
}
//
// Layout
//
template <class Shape, class Stride = LayoutLeft::Apply<Shape> >
struct Layout
: private cute::tuple<Shape, Stride> // EBO for static layouts
{
// Expensive in compilation time...
//static_assert(is_congruent<Shape, Stride>::value, "Shape and Stride must be congruent");
// NOTE: This defaults static Shapes/Strides correctly, but not dynamic
CUTE_HOST_DEVICE constexpr
Layout(Shape const& shape = {}, Stride const& stride = {})
: cute::tuple<Shape, Stride>(shape, stride)
{}
//
// Accessors
//
static constexpr int rank = rank_v<Shape>;
CUTE_HOST_DEVICE constexpr
decltype(auto)
layout() {
return *this;
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
layout() const {
return *this;
}
template <int... I>
CUTE_HOST_DEVICE constexpr
decltype(auto)
shape() {
return get<0,I...>(static_cast<cute::tuple<Shape, Stride>&>(*this));
}
template <int... I>
CUTE_HOST_DEVICE constexpr
decltype(auto)
shape() const {
return get<0,I...>(static_cast<cute::tuple<Shape, Stride> const&>(*this));
}
template <int... I>
CUTE_HOST_DEVICE constexpr
decltype(auto)
stride() {
return get<1,I...>(static_cast<cute::tuple<Shape, Stride>&>(*this));
}
template <int... I>
CUTE_HOST_DEVICE constexpr
decltype(auto)
stride() const {
return get<1,I...>(static_cast<cute::tuple<Shape, Stride> const&>(*this));
}
//
// Mappings
//
// Map a logical coordinate to a linear index (Coord has no Underscore slice operators)
// OR
// Slice the layout and return the sublayout (Coord has an Underscore slice op)
template <class Coord>
CUTE_HOST_DEVICE constexpr
auto
operator()(Coord const& coord) const {
if constexpr (has_underscore<Coord>::value) {
return slice(coord, *this);
} else {
return crd2idx(coord, shape(), stride());
}
CUTE_GCC_UNREACHABLE;
}
// Convenience function for multi-dimensional coordinates
template <class Coord0, class Coord1, class... Coords>
CUTE_HOST_DEVICE constexpr
auto
operator()(Coord0 const& c0, Coord1 const& c1, Coords const&... cs) const {
return operator()(make_coord(c0,c1,cs...));
}
//
// Compose
//
template <class OtherLayout>
CUTE_HOST_DEVICE constexpr
auto
compose(OtherLayout const& other) const {
return composition(*this, other);
}
template <class... Layouts>
CUTE_HOST_DEVICE constexpr
auto
compose(Layouts const&... layouts) const {
return composition(*this, make_tile(layouts...));
}
template <class OtherShape>
CUTE_HOST_DEVICE constexpr
auto
with_shape(OtherShape const& shape) const {
return composition(*this, make_layout(shape));
}
template <class... Shapes>
CUTE_HOST_DEVICE constexpr
auto
with_shape(Shapes const&... shapes) const {
return composition(*this, make_layout(make_shape(shapes...)));
}
//
// Tile
//
template <class OtherLayout>
CUTE_HOST_DEVICE constexpr
auto
tile(OtherLayout const& other) const {
return tiled_divide(*this, other);
}
template <class... Layouts>
CUTE_HOST_DEVICE constexpr
auto
tile(Layouts const&... layouts) const {
return tiled_divide(*this, make_tile(layouts...));
}
//
// Utility
//
//
// Index to Coordinate
//
// NOTE: Only valid for compact layouts
// Return the (hierarchical) ND logical coordinate corresponding to the linear index
// @post crd2idx(@a result, shape(), stride()) == idx
// @post congruent(@a result, shape())
template <class IInt,
__CUTE_REQUIRES(is_integral<IInt>::value)>
CUTE_HOST_DEVICE constexpr
auto
get_hier_coord(IInt const& idx) const {
return cute::idx2crd(idx, shape(), stride());
}
// Return the (flat) ND logical coordinate corresponding to the linear index
// @post crd2idx(@a result, shape(), stride()) == idx
// @post rank(@a result) == rank(shape()) && depth(@a result) == 1
template <class IInt,
__CUTE_REQUIRES(is_integral<IInt>::value)>
CUTE_HOST_DEVICE constexpr
auto
get_flat_coord(IInt const& idx) const {
return cute::crd2crd(this->get_hier_coord(idx), shape(), repeat<rank>(Int<1>{}));
}
// Return the generalized column-major 1D logical coordinate corresponding to the linear index
// @post crd2idx(@a result, shape(), stride()) == idx
// @post is_integral<decltype(@a result)>::value
template <class IInt,
__CUTE_REQUIRES(is_integral<IInt>::value)>
CUTE_HOST_DEVICE constexpr
auto
get_1d_coord(IInt const& idx) const {
return cute::crd2idx(this->get_hier_coord(idx), shape());
}
//
// Coordinate to Coordinate
//
#if 0
// Return the (hierarchical) ND logical coordinate corresponding to the linear index
// @post congruent(@a result, shape())
template <class Coord>
CUTE_HOST_DEVICE constexpr
auto
crd_2_hier_coord(Coord const& crd) const {
return cute::crd2crd(crd, shape(), shape());
}
// Return the (flat) ND logical coordinate corresponding to the linear index
// @post rank(@a result) == rank(shape()) && depth(@a result) == 1
template <class Coord>
CUTE_HOST_DEVICE constexpr
auto
crd_2_flat_coord(Coord const& crd) const {
return cute::crd2crd(crd, shape(), product_each(shape()));
}
// Return the generalized column-major 1D logical coordinate corresponding to the linear index
// @post is_integral<decltype(@a result)>::value
template <class Coord>
CUTE_HOST_DEVICE constexpr
auto
crd_2_1d_coord(Coord const& crd) const {
//return cute::crd2crd(crd, shape(), product(shape()));
return cute::crd2idx(crd, shape());
}
#endif
};
// Equality, return a static or dynamic boolean
template <class ShapeA, class StrideA,
class ShapeB, class StrideB>
CUTE_HOST_DEVICE constexpr
auto
operator==(Layout<ShapeA,StrideA> const& layoutA, Layout<ShapeB,StrideB> const& layoutB)
{
return layoutA.shape() == layoutB.shape() && layoutA.stride() == layoutB.stride();
}
template <class Layout>
struct is_layout : false_type {};
template <class Shape, class Stride>
struct is_layout<Layout<Shape,Stride>> : true_type {};
//
// Layout construction
//
template <class Shape, class Stride,
__CUTE_REQUIRES((is_tuple<Shape >::value || is_integral<Shape >::value) &&
(is_tuple<Stride>::value || is_integral<Stride>::value))>
CUTE_HOST_DEVICE constexpr
auto
make_layout(Shape const& shape, Stride const& stride)
{
return Layout<Shape,Stride>(shape, stride);
}
template <class Shape,
__CUTE_REQUIRES(is_tuple<Shape>::value || is_integral<Shape>::value)>
CUTE_HOST_DEVICE constexpr
auto
make_layout(Shape const& shape)
{
return make_layout(shape, compact_col_major(shape));
}
// Construct a layout from multiple layouts by
// concatenating each layout as an independent mode
template <class... Shapes, class... Strides>
CUTE_HOST_DEVICE constexpr
auto
make_layout(Layout<Shapes,Strides> const&... layouts)
{
return make_layout(make_shape (layouts.shape()...),
make_stride(layouts.stride()...));
}
//
// Convenience tags for common layouts
//
template <class Shape>
CUTE_HOST_DEVICE constexpr
auto
make_layout(Shape const& shape, GenColMajor)
{
return make_layout(shape, compact_col_major(shape));
}
template <class Shape>
CUTE_HOST_DEVICE constexpr
auto
make_layout(Shape const& shape, GenRowMajor)
{
return make_layout(shape, compact_row_major(shape));
}
//
// Advanced Layout constructions
//
// Make a compact layout with shape @a shape and strides following the order induced by @a order.
// Dynamic values in @a order are ignored, considered large, and considered ordered from left to right.
// Example:
// make_ordered_layout(Shape<_2,_2,_2,_2>{}, Step<_0,_2,_3,_1>{})
// -> (_2,_2,_2,_2):(_1,_4,_8,_2)
// make_ordered_layout(make_shape(2,3,4,5), make_step(Int<2>{}, 67, 42, Int<50>{}))
// -> (2,3,4,5):(_1,10,30,2)
template <class Shape, class Order>
CUTE_HOST_DEVICE constexpr
auto
make_ordered_layout(Shape const& shape, Order const& order)
{
return make_layout(shape, compact_order(shape, order));
}
// Make a compact layout with the same shape as @a layout
// and strides following the order induced by @a layout.stride().
// Static-0 strides in the input @a layout are preserved in the output.
// Example:
// make_layout_like(Layout<Shape<_2,_2,_2,_2>, Stride<_0,_2,_4,_1>>{})
// -> (_2,_2,_2,_2):(_0,_2,_4,_1)
// make_layout_like(make_layout(make_shape(2,3,4,5), make_stride(Int<0>{},42,Int<1>{},Int<0>{})))
// -> (2,3,4,5):(_0,4,_1,_0)
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
make_layout_like(Layout<Shape,Stride> const& layout)
{
return make_layout(layout.shape(),
compact_order(filter_zeros(layout.stride(), layout.shape()), layout.stride()));
}
// Make a compact layout with the same shape as @a layout
// and strides following the order induced by @a layout.stride(),
// except mode-0 is always stride-1 and generated column-major.
// The 0th mode is commonly used for MMA_Atoms or Copy_Atoms so this
// generates the 0th mode with LayoutLeft (preserving stride-0s) regardless of the reference layout
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
make_fragment_like(Layout<Shape,Stride> const& layout)
{
constexpr int R = Layout<Shape,Stride>::rank;
if constexpr (R > 1 && is_static<Shape>::value) {
return tiled_product(make_layout(get<0>(layout.shape()),
compact_col_major(filter_zeros(get<0>(layout.stride()), get<0>(layout.shape())))),
make_ordered_layout(take<1,R>(layout.shape()), take<1,R>(layout.stride())));
} else {
return make_layout(layout.shape());
}
CUTE_GCC_UNREACHABLE;
}
template <class Shape,
__CUTE_REQUIRES(is_tuple<Shape>::value || is_integral<Shape>::value)>
CUTE_HOST_DEVICE constexpr
auto
make_fragment_like(Shape const& shape)
{
return make_layout(shape);
}
//
// Make an identity layout that maps a coordinate to itself
//
template <class Shape>
CUTE_HOST_DEVICE constexpr
auto
make_identity_layout(Shape const& shape)
{
return make_layout(shape, make_basis_like(shape));
}
//
// Operations to manipulate Layouts like a tuple of pairs
//
// Return the Is...th sublayout.
// For Is... = <I0,I1,...,IN>, equivalent to get<IN>(...get<I1>(get<I0>(layout)))
template <size_t... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
get(Layout<Shape,Stride> const& layout)
{
return make_layout(get<Is...>(layout.shape()),
get<Is...>(layout.stride()));
}
// Return a new layout with only the modes in the range [B,E)
template <int B, int E, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
take(Layout<Shape,Stride> const& layout)
{
static_assert(B < E, "take: empty range error");
static_assert(0 <= B && E <= Layout<Shape,Stride>::rank, "take: range out of bounds");
return make_layout(take<B,E>(layout.shape()),
take<B,E>(layout.stride()));
}
// Return a new layout with only the modes Is... = <I0,I1,...,IN>
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
select(Layout<Shape,Stride> const& layout)
{
return make_layout(select<Is...>(layout.shape()),
select<Is...>(layout.stride()));
}
// Return a layout with depth at most 1
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
flatten(Layout<Shape,Stride> const& layout)
{
return make_layout(flatten(layout.shape()),
flatten(layout.stride()));
}
// Return a layout whose profile is congruent to TargetProfile
// @pre Input layout is flat, flatten(@a layout) == @a layout
// @pre Input layout can be folded to profile, rank(@a layout) == rank(flatten(@a target_profile))
// @post congruent(@a result, @a target_profile)
template <class Shape, class Stride, class TargetProfile>
CUTE_HOST_DEVICE constexpr
auto
unflatten(Layout<Shape,Stride> const& layout, TargetProfile const& target_profile)
{
return make_layout(unflatten(layout.shape(), target_profile),
unflatten(layout.stride(), target_profile));
}
//
// Utilities
//
// Return the sublayout of mode I...
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
decltype(auto)
layout(Layout<Shape,Stride> const& layout)
{
if constexpr (sizeof...(Is) == 0) {
return layout;
} else {
return get<Is...>(layout);
}
CUTE_GCC_UNREACHABLE;
}
// Return the shape of a mode
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
decltype(auto)
shape(Layout<Shape,Stride>& layout)
{
return layout.template shape<Is...>();
}
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
decltype(auto)
shape(Layout<Shape,Stride> const& layout)
{
return layout.template shape<Is...>();
}
// Return the stride of a mode
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
decltype(auto)
stride(Layout<Shape,Stride>& layout)
{
return layout.template stride<Is...>();
}
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
decltype(auto)
stride(Layout<Shape,Stride> const& layout)
{
return layout.template stride<Is...>();
}
// Return the number of elements in a mode
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
size(Layout<Shape,Stride> const& layout)
{
return size(shape<Is...>(layout));
}
// Return the number of modes
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
rank(Layout<Shape,Stride> const& layout)
{
return rank(shape<Is...>(layout));
}
// Return the depth of the layout
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
depth(Layout<Shape,Stride> const& layout)
{
return depth(shape<Is...>(layout));
}
// Return the codomain shape of a mode
// @post size(coshape(@a a)) == cosize(@a a)
// @return C Coordinate with smallest elements such that
// @a elem_less(sub_layout(c), C) for all c < size(@a sub_layout)
// where sub_layout = get<Is...>(layout).
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
coshape(Layout<Shape,Stride> const& layout)
{
// Protect against negative strides
auto abs_sub_layout = make_layout(shape<Is...>(layout),
transform_leaf(stride<Is...>(layout), abs_fn{}));
auto co_coord = as_arithmetic_tuple(abs_sub_layout(size(abs_sub_layout) - Int<1>{}));
return co_coord + repeat_like(co_coord, Int<1>{});
}
// Return the codomain size of a mode
// @return M smallest integer such that
// @a sub_layout(c) < M for all c < size(@a sub_layout)
// where sub_layout = get<Is...>(layout).
template <int... Is, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
cosize(Layout<Shape,Stride> const& layout)
{
return size(coshape<Is...>(layout));
}
template <class Layout>
using cosize_t = decltype(cosize(declval<Layout>()));
template <class Layout>
static constexpr int cosize_v = cosize_t<Layout>::value;
// With crd2idx(coord, shape), makes sense to have crd2idx(coord, Layout) as well
template <class Coord, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
crd2idx(Coord const& c, Layout<Shape,Stride> const& layout)
{
return crd2idx(c, layout.shape(), layout.stride());
}
//
// Slice and Dice a layout
//
template <class Coord, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
slice(Coord const& c, Layout<Shape,Stride> const& layout)
{
return make_layout(slice(c, layout.shape()),
slice(c, layout.stride()));
}
template <class Coord, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
slice_and_offset(Coord const& c, Layout<Shape,Stride> const& layout)
{
return cute::make_tuple(slice(c, layout), crd2idx(c, layout));
}
template <class Coord, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
dice(Coord const& c, Layout<Shape,Stride> const& layout)
{
return make_layout(dice(c, layout.shape()),
dice(c, layout.stride()));
}
// Compute a pointer offset and (potentially modified) layout from a coordinate
// This exists so it can be overloaded for ComposedLayout
template <class Coord, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
domain_offset(Coord const& coord, Layout<Shape,Stride> const& layout)
{
return cute::make_tuple(layout, layout(coord));
}
//
// Transform the modes of a layout
//
namespace detail {
template <class Tuple, class F, int... I>
CUTE_HOST_DEVICE constexpr
auto
transform_layout(Tuple const& t, F&& f, seq<I...>)
{
return make_layout(f(get<I>(t))...);
}
template <class Tuple0, class Tuple1, class F, int... I, int... I0, int... I1>
CUTE_HOST_DEVICE constexpr
auto
transform_layout(Tuple0 const& t0, Tuple1 const& t1, F&& f, seq<I...>, seq<I0...>, seq<I1...>)
{
return make_layout(f(get<I>(t0),get<I>(t1))..., get<I0>(t0)..., get<I1>(t1)...);
}
} // end namespace detail
template <class Tuple, class F>
CUTE_HOST_DEVICE constexpr
auto
transform_layout(Tuple const& t, F&& f)
{
return detail::transform_layout(t, f, make_seq<decltype(rank(t))::value>{});
}
template <class Tuple0, class Tuple1, class F>
CUTE_HOST_DEVICE constexpr
auto
transform_layout(Tuple0 const& t0, Tuple1 const& t1, F&& f)
{
constexpr int R0 = decltype(rank(t0))::value;
constexpr int R1 = decltype(rank(t1))::value;
constexpr int R = (R0 < R1) ? R0 : R1;
return detail::transform_layout(t0, t1, f, make_seq<R>{}, make_range<R,R0>{}, make_range<R,R1>{});
}
//
// Coalesce and Filter
//
namespace detail {
// Look at each element and the front of the stack (in order of priority)
// front(NewLayout) get<I>(Layout)
// s0:d0 _1:d1 => continue
// _1:d0 s1:d1 => replace_front s1:d1
// s0:s1*d1 s1:d1 => replace_front s0*s1:d1
// s0:d0 s1:d1 => prepend s1:d1
//
// @pre OldShape and OldStride are flat
template <int I, class OldShape, class OldStride, class NewShape, class NewStride>
CUTE_HOST_DEVICE constexpr
auto
bw_coalesce(OldShape const& old_shape, OldStride const& old_stride,
NewShape const& new_shape, NewStride const& new_stride)
{
if constexpr (I == -1) {
// Base case, we're done
if constexpr (is_constant<1, NewShape>::value) {
return Layout<_1,_0>{};
} else {
return Layout<NewShape,NewStride>{new_shape,new_stride};
}
} else if constexpr (is_constant<1, decltype(get<I>(old_shape))>::value) {
// shape<I>(layout) == _1, skip it and continue
return bw_coalesce<I-1>(old_shape, old_stride, new_shape, new_stride);
} else if constexpr (is_constant<1, NewShape>::value) {
// Replace our shape-1 with anything (Can only happen on input new_shape/new_stride)
return bw_coalesce<I-1>(old_shape, old_stride, get<I>(old_shape), get<I>(old_stride));
} else if constexpr (is_static<decltype(get<0>(new_shape))>::value &&
is_constant<true, decltype(get<I>(old_shape) * get<I>(old_stride) == get<0>(new_stride))>::value) {
// Merge modes because the shapes and strides match
return bw_coalesce<I-1>(old_shape, old_stride,
replace_front(new_shape, get<I>(old_shape) * get<0>(new_shape)),
replace_front(new_stride, get<I>(old_stride)));
} else {
// Can't replace or merge, so prepend a new mode
return bw_coalesce<I-1>(old_shape, old_stride,
prepend(new_shape, get<I>(old_shape)),
prepend(new_stride, get<I>(old_stride)));
}
CUTE_GCC_UNREACHABLE;
}
// cute::coalesce promises to not change the Layout as a function from integers to codomain.
// It accomplishes this inside of the Layout's domain, but not always outside of the domain.
// Example: (_4,_1):(_1,_0) coalesces to _4:_1.
// detail::coalesce_x preserves the Layout function inside its domain and outside.
//
// @post depth(@a result) <= 1
// @post for all i, 0 <= i, @a layout(i) == @a result(i)
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
coalesce_x(Layout<Shape,Stride> const& layout)
{
auto flat_shape = flatten(layout.shape());
auto flat_stride = flatten(layout.stride());
constexpr int R = decltype(rank(flat_shape))::value;
if constexpr (is_constant<1, decltype(get<R-1>(flat_shape))>::value) {
return detail::bw_coalesce<R-2>(flat_shape, flat_stride, Int<2>{}, get<R-1>(flat_stride));
} else {
return detail::bw_coalesce<R-2>(flat_shape, flat_stride, get<R-1>(flat_shape), get<R-1>(flat_stride));
}
}
// Apply coalesce_x at the terminals of trg_profile
template <class Shape, class Stride, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
coalesce_x(Layout<Shape,Stride> const& layout, IntTuple const& trg_profile)
{
if constexpr (is_tuple<IntTuple>::value) {
static_assert(tuple_size<IntTuple>::value <= Layout<Shape,Stride>::rank);
return cute::transform_layout(layout, trg_profile, [](auto const& l, auto const& t) { return coalesce_x(l,t); });
} else {
return coalesce_x(layout);
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
// "Simplify" the layout by combining modes that are possible to combine
// Does not respect the shape of the layout, but does preserve total size
// @post size(@a result) == size(@a layout)
// @post depth(@a result) <= 1
// @post for all i, 0 <= i < size(@a layout), @a layout(i) == @a result(i)
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
coalesce(Layout<Shape,Stride> const& layout)
{
auto flat_shape = flatten(layout.shape());
auto flat_stride = flatten(layout.stride());
constexpr int R = decltype(rank(flat_shape))::value;
return detail::bw_coalesce<R-2>(flat_shape, flat_stride, get<R-1>(flat_shape), get<R-1>(flat_stride));
}
// Apply coalesce at the terminals of trg_profile
template <class Shape, class Stride, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
coalesce(Layout<Shape,Stride> const& layout, IntTuple const& trg_profile)
{
if constexpr (is_tuple<IntTuple>::value) {
static_assert(tuple_size<IntTuple>::value <= Layout<Shape,Stride>::rank);
return transform_layout(layout, trg_profile, [](auto const& l, auto const& t) { return coalesce(l,t); });
} else {
return coalesce(layout);
}
CUTE_GCC_UNREACHABLE;
}
// Combine static and dynamic modes of a shape.
// @post size(@a result) == size(@a shape)
// @post depth(@a result) <= 1
template <class Shape>
CUTE_HOST_DEVICE constexpr
auto
coalesce(Shape const& shape)
{
static_assert(is_integral<Shape>::value || is_tuple<Shape>::value);
return cute::fold_first(flatten(shape), [](auto const& init, auto const& a) {
if constexpr (is_static<decltype(back(init))>::value == is_static<decltype(a)>::value) {
return replace_back(init, back(init) * a); // Both static or both dynamic, coalesce and replace
} else {
return append(init, a); // Can't coalesce, so append
}
});
}
// Replace the modes in layout that have a 0-stride with a 1-size
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
filter_zeros(Layout<Shape,Stride> const& layout)
{
return make_layout(filter_zeros(layout.stride(), layout.shape()), layout.stride());
}
// Remove all of the 0-strides and 1-sizes
// Return 1-shape if empty
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
filter(Layout<Shape,Stride> const& layout)
{
return coalesce(filter_zeros(layout));
}
// Apply filter at the terminals of trg_profile
template <class Shape, class Stride, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
filter(Layout<Shape,Stride> const& layout, IntTuple const& trg_profile)
{
if constexpr (is_tuple<IntTuple>::value) {
static_assert(tuple_size<IntTuple>::value <= Layout<Shape,Stride>::rank);
return transform_layout(layout, trg_profile, [](auto const& l, auto const& t) { return filter(l,t); });
} else {
return filter(layout);
}
CUTE_GCC_UNREACHABLE;
}
//
// Append, Prepend, Replace
//
template <int N, class ShapeA, class StrideA, class ShapeX = _1, class StrideX = _0>
CUTE_HOST_DEVICE constexpr
auto
append(Layout<ShapeA,StrideA> const& layout,
Layout<ShapeX,StrideX> const& x = {})
{
return make_layout(append<N>(layout.shape(), x.shape()),
append<N>(layout.stride(), x.stride()));
}
template <class ShapeA, class StrideA, class ShapeX = _1, class StrideX = _0>
CUTE_HOST_DEVICE constexpr
auto
append(Layout<ShapeA,StrideA> const& layout,
Layout<ShapeX,StrideX> const& x = {})
{
return make_layout(append(layout.shape(), x.shape()),
append(layout.stride(), x.stride()));
}
template <int N, class ShapeA, class StrideA, class ShapeX = _1, class StrideX = _0>
CUTE_HOST_DEVICE constexpr
auto
prepend(Layout<ShapeA,StrideA> const& layout,
Layout<ShapeX,StrideX> const& x = {})
{
return make_layout(prepend<N>(layout.shape(), x.shape()),
prepend<N>(layout.stride(), x.stride()));
}
template <class ShapeA, class StrideA, class ShapeX = _1, class StrideX = _0>
CUTE_HOST_DEVICE constexpr
auto
prepend(Layout<ShapeA,StrideA> const& layout,
Layout<ShapeX,StrideX> const& x = {})
{
return make_layout(prepend(layout.shape(), x.shape()),
prepend(layout.stride(), x.stride()));
}
template <int N, class ShapeA, class StrideA, class ShapeX, class StrideX>
CUTE_HOST_DEVICE constexpr
auto
replace(Layout<ShapeA,StrideA> const& layout,
Layout<ShapeX,StrideX> const& x)
{
return make_layout(replace<N>(layout.shape(), x.shape()),
replace<N>(layout.stride(), x.stride()));
}
template <int B, int E, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
group(Layout<Shape,Stride> const& layout)
{
return make_layout(group<B,E>(layout.shape()),
group<B,E>(layout.stride()));
}
//
// Composition of two layouts: lhs o rhs
// @post compatible(rhs, result)
// @post result(c) = lhs(rhs(c))
// for all c in the domain of rhs
//
namespace detail {
template <class LShape, class LStride,
class RShape, class RStride>
CUTE_HOST_DEVICE constexpr
auto
composition_impl(LShape const& lhs_shape, LStride const& lhs_stride,
RShape const& rhs_shape, RStride const& rhs_stride)
{
if constexpr (is_tuple<RShape>::value) {
// Apply the right-distributivity of Layout composition
return transform_layout(rhs_shape, rhs_stride, [&](auto const& s, auto const& d) {
return composition_impl(lhs_shape, lhs_stride, s, d);
});
} else
if constexpr (is_scaled_basis<RStride>::value) {
// Special case for a ScaledBasis stride
return composition_impl(basis_get(rhs_stride, lhs_shape), basis_get(rhs_stride, lhs_stride),
rhs_shape, basis_value(rhs_stride));
} else
if constexpr (is_constant<0, RStride>::value) {
// Special case shortcut for any static stride-0
return Layout<RShape, RStride>{rhs_shape, rhs_stride};
} else
if constexpr (is_integral<decltype(lhs_shape)>::value) {
// Special case shortcut for any integral LShape
return Layout{rhs_shape, rhs_stride * lhs_stride};
} else
if constexpr (is_constant<1, RStride>::value) {
// Special case shortcut for any static stride-1
constexpr int R = rank_v<LShape>;
auto result_shape_0 = take<0,R-1>(lhs_shape);
// Mod out the rhs_shape from the lhs_shape
auto const [result_shape_1, rest_shape] = fold(result_shape_0, cute::make_tuple(cute::make_tuple(), rhs_shape),
[] (auto const& init, auto const& si) {
return cute::make_tuple(append(get<0>(init), shape_min(abs(si), get<1>(init))), shape_div(get<1>(init), abs(si)));
});
// Jump into coalesce and append (rest_shape, get<R-1>(lhs_stride))
return detail::bw_coalesce<R-2>(result_shape_1, lhs_stride, rest_shape, get<R-1>(lhs_stride));
} else {
// General case: integral RShape and RStride, tuple LShape and LStride
constexpr int R = rank_v<LShape>;
auto result_shape_0 = take<0,R-1>(lhs_shape);
auto result_stride_0 = take<0,R-1>(lhs_stride);
// Divide out the rhs_stride from the lhs_shape
auto const [result_shape_1, rest_stride] = fold(result_shape_0, cute::make_tuple(cute::make_tuple(), rhs_stride),
[] (auto const& init, auto const& di) {
return cute::make_tuple(append(get<0>(init), shape_div(di, get<1>(init))), shape_div(get<1>(init), di));
});
// Apply any lhs_shape changes to the stride
auto result_stride_1 = elem_scale(result_stride_0, shape_div(result_shape_0, result_shape_1));
// Mod out the rhs_shape from the lhs_shape
auto const [result_shape_2, rest_shape] = fold(result_shape_1, cute::make_tuple(cute::make_tuple(), rhs_shape),
[] (auto const& init, auto const& si) {
return cute::make_tuple(append(get<0>(init), shape_min(abs(si), get<1>(init))), shape_div(get<1>(init), abs(si)));
});
// Jump into coalesce and append (rest_shape, rest_stride * get<R-1>(lhs_stride))
return detail::bw_coalesce<R-2>(result_shape_2, result_stride_1, rest_shape, rest_stride * get<R-1>(lhs_stride));
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
template <class LShape, class LStride,
class RShape, class RStride>
CUTE_HOST_DEVICE constexpr
auto
composition(Layout<LShape,LStride> const& lhs,
Layout<RShape,RStride> const& rhs)
{
auto coprofile = repeat_like(decltype(coshape(rhs)){}, Int<0>{});
auto flat_lhs = detail::coalesce_x(lhs, coprofile);
return detail::composition_impl(flat_lhs.shape(), flat_lhs.stride(), rhs.shape(), rhs.stride());
}
template <class LShape, class LStride, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
composition(Layout<LShape,LStride> const& lhs,
Tiler const& rhs)
{
if constexpr (is_tuple<Tiler>::value) {
static_assert(tuple_size<Tiler>::value <= Layout<LShape,LStride>::rank);
// Drop any modes of lhs that aren't hit by rhs
return detail::transform_layout(lhs, rhs, [](auto const& l, auto const& r) { return composition(l,r); }, make_seq<tuple_size<Tiler>::value>{}, seq<>{}, seq<>{});
} else if constexpr (is_underscore<Tiler>::value) {
return lhs;
} else if constexpr (is_integral<Tiler>::value) {
auto flat_lhs = detail::coalesce_x(lhs);
return detail::composition_impl(flat_lhs.shape(), flat_lhs.stride(), rhs, Int<1>{});
}
CUTE_GCC_UNREACHABLE;
}
//
// Complement
//
// Build the complement of a layout.
// @post size(@a result) >= @a cosize_hi / size(filter(@a layout)));
// @post For all i in [1,size(@a result)),
// @a result(i) < @a result(i-1)
// For all j in [0, size(@a layout)),
// @a result(i) != @a layout(j)
//
namespace detail {
// @pre @a layout has been filtered (flattened and no stride-0 or size-1 modes).
template <class Shape, class Stride, class CoTarget>
CUTE_HOST_DEVICE constexpr
auto
complement(Shape const& shape, Stride const& stride, CoTarget const& cotarget)
{
if constexpr (is_constant<0, Stride>::value) {
// Special case for irreducible rank-1 stride-0 layout
return make_layout(coalesce(cotarget));
} else {
// General case
constexpr int R = rank_v<Shape>;
static_assert(R == 1 || is_static<Stride>::value,
"Dynamic-stride complement only for rank-1 layouts");
// Should just be a sort and a fold...
// Then we could even handle dynamic strides (but they would destroy all static strides)
auto [shape_, stride_, result_shape_, result_stride] =
fold(make_seq<R-1>{},
cute::make_tuple(shape, stride, cute::make_tuple(), cute::make_tuple(Int<1>{})),
[](auto const& init, auto i)
{
auto [shape, stride, result_shape, result_stride] = init;
auto min_stride = cute::min(stride);
auto min_idx = cute::find(stride, min_stride);
auto new_shape = min_stride / get<i>(result_stride);
auto new_stride = min_stride * get<min_idx>(shape);
static_assert(not is_constant<0, decltype(new_shape)>::value, "Non-injective Layout detected in complement.");
return cute::make_tuple(remove<min_idx>(shape), // Remove the min_idx from shape
remove<min_idx>(stride), // Remove the min_idx from stride
append(result_shape , new_shape ), // new shape = min_stride / last_stride
append(result_stride, new_stride)); // new stride = min_stride * curr_shape
});
// Append the last shape mode
auto new_shape = get<0>(stride_) / get<R-1>(result_stride); // new shape = min_stride / last_stride
static_assert(not is_constant<0, decltype(new_shape)>::value, "Non-injective Layout detected in complement.");
auto result_shape = append(result_shape_, new_shape);
// Compute the rest_shape and rest_stride
auto new_stride = get<0>(stride_) * get<0>(shape_); // new stride = min_stride * curr_shape
auto rest_shape = coalesce(ceil_div(cotarget, new_stride));
auto rest_stride = compact_col_major(rest_shape, new_stride);
// Coalesce and append (rest_shape, rest_stride)
return coalesce(make_layout(make_shape (result_shape , rest_shape ),
make_stride(result_stride, rest_stride)));
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
template <class Shape, class Stride, class CoTarget>
CUTE_HOST_DEVICE constexpr
auto
complement(Layout<Shape,Stride> const& layout, CoTarget const& cotarget)
{
auto filter_layout = filter(layout);
return detail::complement(filter_layout.shape(), filter_layout.stride(), shape(cotarget));
}
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
complement(Layout<Shape,Stride> const& layout)
{
auto filter_layout = filter(layout);
return detail::complement(filter_layout.shape(), filter_layout.stride(), cosize(filter_layout));
}
//
// Right-Inverse and Left-Inverse
//
namespace detail {
template <int NextStride, class Shape, class Stride, int... Is>
CUTE_HOST_DEVICE constexpr
auto
inverse_seq(Shape const& shape, Stride const& stride, seq<Is...>)
{
auto next_I = cute::find_if(stride, [](auto a) { return is_constant<NextStride, decltype(a)>{}; });
if constexpr (next_I == decltype(rank(stride))::value) {
// If not found, return current seq
return seq<Is...>{};
} else {
// auto next_stride = get<next_I>(shape) * get<next_I>(stride);
// NOTE: Needed for g++-7
using next_stride = decltype(get<next_I>(shape) * get<next_I>(stride));
if constexpr (is_static<next_stride>::value && !is_constant<NextStride, next_stride>::value) {
// If next_stride is static and unique, then continue
return inverse_seq<next_stride::value>(shape, stride, seq<Is..., next_I>{});
} else {
// Else return current seq + next_I
return seq<Is..., next_I>{};
}
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
//
// Build the right-inverse of a layout
// @pre is_static<Layout>
// @result A layout @a result such that
// @a layout(@a result(i)) == i for all i < size(@a result)
// @result A layout @a result such that
// composition(@a layout, @a result) is identical to make_layout(shape(result))
//
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
right_inverse(Layout<Shape,Stride> const& layout)
{
auto flat_layout = coalesce(layout);
auto astride = transform_leaf(flat_layout.stride(), abs_fn{});
// Find Int<1>{}, the starting stride, and follow the strides to gen inverse_seq
[[maybe_unused]] auto iseq = detail::inverse_seq<1>(flat_layout.shape(), astride, seq<>{});
if constexpr (iseq.size() == 0) {
return Layout<_1,_0>{}; // Empty case, nothing found
} else {
// Generate the corresponding new strides and construct
auto rstride = compact_col_major(flat_layout.shape());
return make_layout(unwrap(transform(iseq, [&](auto i) { return shape<i>(flat_layout); })),
unwrap(transform(iseq, [&](auto i) { return signum(stride<i>(flat_layout)) * get<i>(rstride); })));
}
CUTE_GCC_UNREACHABLE;
}
CUTE_HOST_DEVICE constexpr
auto
right_inverse(Underscore const& _)
{
return _;
}
//
// Build the left-inverse of a layout
// @pre is_static<Layout>
// @pre @a layout is an injective function
// @result A layout @a result such that
// @a result(@a layout(i)) == i for all i < size(@a layout)
// @result A layout @a result such that
// composition(@a result, @a layout) is identical to make_layout(shape(layout))
//
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
left_inverse(Layout<Shape,Stride> const& layout)
{
return right_inverse(make_layout(layout, complement(layout)));
}
CUTE_HOST_DEVICE constexpr
auto
left_inverse(Underscore const& _)
{
return _;
}
//
// Max Common Layout
//
/* Return a layout that points to the maximum number of contiguous elements
* that logically correspond in the layouts of @a a and @a b.
*
* @returns Layout R
* @post For all 0 <= i < size(R), a(R(i)) == i and b(R(i)) == i
*/
template <class ShapeA, class StrideA,
class ShapeB, class StrideB>
CUTE_HOST_DEVICE constexpr
auto
max_common_layout(Layout<ShapeA,StrideA> const& a,
Layout<ShapeB,StrideB> const& b)
{
Layout inv_b = right_inverse(b);
Layout common = coalesce(composition(a, inv_b));
// Keep only the static identity component of the common layout
if constexpr (is_static<decltype(shape<0>(common))>::value &&
is_constant<1, decltype(stride<0>(common))>::value) {
// Truncate to the size of the contiguous vector (static stride-1 mode)
return composition(inv_b, layout<0>(common));
} else {
return Layout<_1,_0>{};
}
}
/* Return Int<N> such that N is the maximum number of contiguous elements
* that logically correspond in the layouts of @a a and @a b.
*
* @returns Int<N> with N >= 1
* @post For all 0 <= n < N, a(b.get_1d_coord(n)) == n
* (NOTE: Problems with negative strides/coords in this post-condition)
*/
template <class ShapeA, class StrideA,
class ShapeB, class StrideB>
CUTE_HOST_DEVICE constexpr
auto
max_common_vector(Layout<ShapeA,StrideA> const& a,
Layout<ShapeB,StrideB> const& b)
{
Layout common = coalesce(composition(a, right_inverse(b)));
// Keep only the static identity component of the common layout
if constexpr (is_static<decltype(shape<0>(common))>::value &&
is_constant<1, decltype(stride<0>(common))>::value) {
// Truncate to the size of the contiguous vector (static stride-1 mode)
return shape<0>(common);
} else {
return Int<1>{};
}
CUTE_GCC_UNREACHABLE;
}
//
// Kernel (Nullspace) of a Layout
//
namespace detail {
template <int NextI, class Stride, int... Is>
CUTE_HOST_DEVICE constexpr
auto
nullspace_seq(Stride const& stride, seq<Is...>)
{
if constexpr (NextI == rank_v<Stride>) {
return seq<Is...>{};
} else
if constexpr (is_constant<0, decltype(get<NextI>(stride))>::value) {
return detail::nullspace_seq<NextI+1>(stride, seq<Is..., NextI>{});
} else {
return detail::nullspace_seq<NextI+1>(stride, seq<Is...>{});
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
//
// Build the nullspace of a layout
// @result A layout @a result such that
// size(@a result) == size(@a layout) / size(filter(@a layout))
// @a layout(@a result(i)) == 0 for all i < size(@a result)
//
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
nullspace(Layout<Shape,Stride> const& layout)
{
auto flat_layout = flatten(layout);
auto iseq = detail::nullspace_seq<0>(flat_layout.stride(), seq<>{});
if constexpr (iseq.size() == 0) {
return Layout<_1,_0>{}; // Empty case, nothing found
} else {
// Generate the corresponding new strides and construct
auto rstride = compact_col_major(flat_layout.shape());
return make_layout(unwrap(transform(iseq, [&](auto i) { return shape<i>(flat_layout); })),
unwrap(transform(iseq, [&](auto i) { return get<i>(rstride); })));
}
CUTE_GCC_UNREACHABLE;
}
//
// Zip
//
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
zip(Layout<Shape,Stride> const& layout)
{
return make_layout(zip(layout.shape()),
zip(layout.stride()));
}
template <class TShape, class TStride,
class UShape, class UStride>
CUTE_HOST_DEVICE constexpr
auto
zip(Layout<TShape,TStride> const& layoutA,
Layout<UShape,UStride> const& layoutB)
{
return make_layout(zip(layoutA.shape(), layoutB.shape()),
zip(layoutA.stride(), layoutB.stride()));
}
//
// Tile unzip
// Logical product and logical divide (on layouts) produce rank-2 results by design.
// Follow the profile of @a tile and zip the rank-2 modes located at the terminals into
// their own mode.
//
template <class LShape, class LStride, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
tile_unzip(Layout<LShape,LStride> const& layout,
Tiler const& tiler)
{
return make_layout(zip2_by(layout.shape(), tiler),
zip2_by(layout.stride(), tiler));
}
//
// Logical divide
//
template <class LShape, class LStride,
class TShape, class TStride>
CUTE_HOST_DEVICE constexpr
auto
logical_divide(Layout<LShape,LStride> const& layout,
Layout<TShape,TStride> const& tiler)
{
return composition(layout, make_layout(tiler, complement(tiler, shape(layout))));
}
template <class LShape, class LStride, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
logical_divide(Layout<LShape,LStride> const& layout,
Tiler const& tiler)
{
if constexpr (is_tuple<Tiler>::value) {
static_assert(tuple_size<Tiler>::value <= Layout<LShape,LStride>::rank, "logical_divide: Too many modes in tiler.");
return transform_layout(layout, tiler, [](auto const& l, auto const& t) { return logical_divide(l,t); });
} else if constexpr (is_underscore<Tiler>::value) {
return layout;
} else if constexpr (is_integral<Tiler>::value) {
return logical_divide(layout, make_layout(tiler));
}
CUTE_GCC_UNREACHABLE;
}
// Generalization of ceil_div for Layout lhs
// is effectively the "rest mode" of logical_divide.
// Occurs in the calculation of gridDim, for example, for generalized tilers
// Example:
// dim3 gridDim(size(ceil_div(problem_shape_M, cta_tiler_M)),
// size(ceil_div(problem_shape_N, cta_tiler_N)));
// This does not consider compositional acceptance, so it may be the case that
// ceil_div produces a result while logical_divide (and friends) do not.
template <class Target, class TShape, class TStride>
CUTE_HOST_DEVICE constexpr
auto
ceil_div(Target const& target,
Layout<TShape,TStride> const& tiler)
{
return complement(tiler, size(target));
}
//
// Convenience operator
// that produces layouts like ((BLK_A,BLK_B,...),(a,b,...,x,y))
// by gathering the tile modes and residuals into a rank-2 result.
//
template <class LShape, class LStride,
class Tiler>
CUTE_HOST_DEVICE constexpr
auto
zipped_divide(Layout<LShape,LStride> const& layout,
Tiler const& tiler)
{
return tile_unzip(logical_divide(layout, tiler), tiler);
}
// Same as zipped_divide, but unpacks the second mode: ((BLK_A,BLK_B,...),a,b,...,x,y)
template <class LShape, class LStride,
class Tiler>
CUTE_HOST_DEVICE constexpr
auto
tiled_divide(Layout<LShape,LStride> const& layout,
Tiler const& tiler)
{
auto result = zipped_divide(layout, tiler);
auto R1 = rank<1>(result);
return result(_, repeat<R1>(_));
}
// Same as zipped_divide, but unpacks both modes: (BLK_A,BLK_B,...,a,b,...,x,y)
template <class LShape, class LStride,
class Tiler>
CUTE_HOST_DEVICE constexpr
auto
flat_divide(Layout<LShape,LStride> const& layout,
Tiler const& tiler)
{
auto result = zipped_divide(layout, tiler);
auto R0 = rank<0>(result);
auto R1 = rank<1>(result);
return result(repeat<R0>(_), repeat<R1>(_));
}
//
// Logical product
//
template <class LShape, class LStride,
class TShape, class TStride>
CUTE_HOST_DEVICE constexpr
auto
logical_product(Layout<LShape,LStride> const& block,
Layout<TShape,TStride> const& tiler)
{
return make_layout(block, composition(complement(block, size(block)*cosize(tiler)), tiler));
}
template <class LShape, class LStride, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
logical_product(Layout<LShape,LStride> const& block,
Tiler const& tiler)
{
if constexpr (is_tuple<Tiler>::value) {
static_assert(tuple_size<Tiler>::value <= Layout<LShape,LStride>::rank, "logical_product: Too many modes in tiler.");
return transform_layout(block, tiler, [](auto const& l, auto const& t) { return logical_product(l,t); });
} else if constexpr (is_underscore<Tiler>::value) {
return block;
} else if constexpr (is_integral<Tiler>::value) {
return logical_product(block, make_layout(tiler));
}
CUTE_GCC_UNREACHABLE;
}
//
// Convenience operator
// that produces layouts like ((BLK_A,BLK_B,...),(a,b,...,x,y))
// by gathering the block modes and products into a rank-2 result.
//
template <class LShape, class LStride,
class Tiler>
CUTE_HOST_DEVICE constexpr
auto
zipped_product(Layout<LShape,LStride> const& block,
Tiler const& tiler)
{
return tile_unzip(logical_product(block, tiler), tiler);
}
// Same as zipped_product, but unpacks the second mode: ((BLK_A,BLK_B,...),a,b,...,x,y)
template <class LShape, class LStride,
class Tiler>
CUTE_HOST_DEVICE constexpr
auto
tiled_product(Layout<LShape,LStride> const& block,
Tiler const& tiler)
{
auto result = zipped_product(block, tiler);
auto R1 = rank<1>(result);
return result(_, repeat<R1>(_));
}
// Same as zipped_product, but unpacks both modes: (BLK_A,BLK_B,...,a,b,...,x,y)
template <class LShape, class LStride,
class Tiler>
CUTE_HOST_DEVICE constexpr
auto
flat_product(Layout<LShape,LStride> const& block,
Tiler const& tiler)
{
auto result = zipped_product(block, tiler);
auto R0 = rank<0>(result);
auto R1 = rank<1>(result);
return result(repeat<R0>(_), repeat<R1>(_));
}
//
// Rank-sensitive products
//
// blocked_product -- Reproduce a block over a tiler.
// Think of every element of "tiler" as a "block"
// and return the layout of the resulting structure.
// @post rank(@a result) == cute::max(rank(@a block), rank(@a tiler))
template <class TShape, class TStride,
class UShape, class UStride>
CUTE_HOST_DEVICE constexpr
auto
blocked_product(Layout<TShape,TStride> const& block,
Layout<UShape,UStride> const& tiler)
{
constexpr int R = cute::max(rank_v<TShape>, rank_v<UShape>);
auto result = logical_product(append<R>(block), append<R>(tiler));
return coalesce(zip(get<0>(result), get<1>(result)), tuple_repeat<R>(Int<1>{}));
}
// raked_product -- Reproduce a block over a tiler with block-interleaving.
// Think of every element of "tiler" as a "block", interleave those blocks,
// and return the layout of the resulting structure.
// @post rank(@a result) == cute::max(rank(@a block), rank(@a tiler))
template <class TShape, class TStride,
class UShape, class UStride>
CUTE_HOST_DEVICE constexpr
auto
raked_product(Layout<TShape,TStride> const& block,
Layout<UShape,UStride> const& tiler)
{
constexpr int R = cute::max(rank_v<TShape>, rank_v<UShape>);
auto result = logical_product(append<R>(block), append<R>(tiler));
return coalesce(zip(get<1>(result), get<0>(result)), tuple_repeat<R>(Int<1>{}));
}
// tile_to_shape -- Perform a product of a layout so that the result matches a target shape.
// This is similar to blocked_product, but specifies the result shape instead of the
// product shape, which is more convenient in certain circumstances.
// @param block The layout to repeat
// @param trg_shape The target shape of the result
// @param ord_shape The order of the modes of @a trg_shape to tile @a layout with.
// Defaults to GenColMajor, so @a layout will repeat
// across the first mode first, the second mode second, etc
// E.g. Step<_2,_1,_3> will cause @a layout to repeat
// across the second mode first, the first mode second, and the third mode last.
// @pre rank(@a block) <= rank(@a trg_shape)
// @post compatible(@a trg_shape, shape(@a result))
template <class Shape, class Stride,
class TrgShape, class ModeOrder = LayoutLeft>
CUTE_HOST_DEVICE constexpr
auto
tile_to_shape(Layout<Shape,Stride> const& block,
TrgShape const& trg_shape,
ModeOrder const& ord_shape = {})
{
CUTE_STATIC_ASSERT_V(rank(block) <= rank(trg_shape), "Rank of layout must be <= rank of target shape.");
constexpr int R = rank_v<TrgShape>;
auto padded_block = append<R>(block);
auto block_shape = product_each(shape(padded_block));
auto target_shape = product_each(shape(trg_shape));
// Assert proper division
if constexpr (is_static<decltype(target_shape)>::value) {
CUTE_STATIC_ASSERT_V(weakly_compatible(block_shape, target_shape),
"tile_to_shape: block shape does not divide the target shape.");
}
auto product_shape = ceil_div(target_shape, block_shape);
return coalesce(blocked_product(padded_block, make_ordered_layout(product_shape, ord_shape)), product_shape);
}
//
// Upcast
// For stride-1 mode, divide size by N. Divide all other strides by N.
//
template <int N, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
upcast(Shape const& shape, Stride const& stride)
{
if constexpr (is_tuple<Shape>::value) { // tuple stride
return transform_layout(shape, stride, [](auto const& s, auto const& d) { return upcast<N>(s,d); });
} else if constexpr (is_constant<0, Stride>::value) { // static-0 stride
return Layout<Shape,Stride>{shape,stride};
} else if constexpr (is_static<Stride>::value) { // static stride
return make_layout(shape_div(shape, shape_div(Int<N>{}, abs(stride))),
shape_div(stride, Int<N>{}));
} else { // dynamic stride
// assume dynamic strides are larger than N and divisible
// assert(stride % N == 0);
return make_layout(shape, safe_div(stride, Int<N>{}));
}
CUTE_GCC_UNREACHABLE;
}
template <int N, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
upcast(Layout<Shape,Stride> const& layout)
{
return upcast<N>(layout.shape(), layout.stride());
}
//
// Downcast
// For stride-1 mode, multiply size by N. Multiply all other strides by N.
//
template <int N, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
downcast(Shape const& shape, Stride const& stride)
{
if constexpr (is_tuple<Shape>::value) {
return transform_layout(shape, stride, [](auto const& s, auto const& d) { return downcast<N>(s,d); });
} else if constexpr (is_constant<1, Stride>::value || is_constant<-1, Stride>::value) {
return make_layout(shape * Int<N>{}, stride);
} else {
return make_layout(shape, stride * Int<N>{});
}
CUTE_GCC_UNREACHABLE;
}
template <int N, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
downcast(Layout<Shape,Stride> const& layout)
{
CUTE_STATIC_ASSERT(has_int1<Stride>::value, "Downcast requires adjacent elements");
return downcast<N>(layout.shape(), layout.stride());
}
//
// Recast
//
template <class OldType, class NewType,
class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
recast_layout(Layout<Shape,Stride> const& layout)
{
using scale = decltype(trait_ratio(sizeof_bits<NewType>{}, sizeof_bits<OldType>{}));
if constexpr (scale::num == 1 && scale::den == 1) {
return layout;
}
else if constexpr (scale::num == 1) {
return downcast<scale::den>(layout);
}
else if constexpr (scale::den == 1) {
return upcast<scale::num>(layout);
}
else {
static_assert(dependent_false<scale>, "Recast not supported.");
}
CUTE_GCC_UNREACHABLE;
}
//
// Display utilities
//
template <class Shape, class Stride>
CUTE_HOST_DEVICE void print(Layout<Shape,Stride> const& layout)
{
print(layout.shape()); print(":"); print(layout.stride());
}
#if !defined(__CUDACC_RTC__)
template <class Shape, class Stride>
CUTE_HOST std::ostream& operator<<(std::ostream& os, Layout<Shape,Stride> const& layout)
{
return os << shape(layout) << ":" << stride(layout);
}
#endif
// Generic 2D Layout to console table
template <class Layout>
CUTE_HOST_DEVICE
void
print_layout(Layout const& layout) // (m,n) -> idx
{
CUTE_STATIC_ASSERT_V(rank(layout) == Int<2>{});
int idx_width = num_digits(cosize(layout)) + 2;
const char* delim = "+-----------------------";
print(layout); print("\n");
// Column indices
print(" ");
for (int n = 0; n < size<1>(layout); ++n) { printf(" %*d ", idx_width-2, n); }
printf("\n");
// Print out A m-by-n
for (int m = 0; m < size<0>(layout); ++m) {
// Header
print(" ");
for (int n = 0; n < size<1>(layout); ++n) { printf("%.*s", idx_width+1, delim); }
printf("+\n");
// Values
printf("%2d ", m); // Row indices
for (int n = 0; n < size<1>(layout); ++n) { printf("| %*d ", idx_width-2, int(layout(m,n))); }
printf("|\n");
}
// Footer
print(" ");
for (int n = 0; n < size<1>(layout); ++n) { printf("%.*s", idx_width+1, delim); }
printf("+\n");
}
// Generic ThrVal 2D Layout to console table
template <class Layout, class ThrID>
CUTE_HOST_DEVICE
void
print_layout(Layout const& layout, ThrID const& thrid) // (m,n) -> (tid,vid) and tid -> thr_idx
{
CUTE_STATIC_ASSERT_V(rank(layout) == Int<2>{});
print(layout); print("\n");
print(thrid); print("\n");
// Print out m-by-n
for (int m = 0; m < size<0>(layout); ++m) {
// Header
for (int n = 0; n < size<1>(layout); ++n) printf("+------");
printf("+\n");
// Values
for (int n = 0; n < size<1>(layout); ++n) printf("|%03d-%02d", int(thrid(layout(m,n) % size(thrid))), int(layout(m,n) / size(thrid)));
printf("|\n");
}
// Footer
for (int n = 0; n < size<1>(layout); ++n) printf("+------");
printf("+\n");
}
// Generic 2D Layout to Latex printer -- B&W 8-value color coding
template <class LayoutA>
CUTE_HOST_DEVICE
void
print_latex(LayoutA const& layout_a)
{
CUTE_STATIC_ASSERT_V(rank(layout_a) <= Int<2>{});
auto layout = append<2>(layout_a, Layout<_1,_0>{});
char const* latex_header =
"\\documentclass[convert]{standalone}\n"
"\\usepackage{tikz}\n\n"
"\\begin{document}\n"
"\\begin{tikzpicture}[x={(0cm,-1cm)},y={(1cm,0cm)},box/.style={rectangle,draw=black,thick,minimum size=1cm,anchor=center,font=\\Large}]\n\n";
char const* latex_footer =
"\\end{tikzpicture}\n"
"\\end{document}\n";
char const* color_map[8] = {"black!00",
"black!40",
"black!20",
"black!60",
"black!10",
"black!50",
"black!30",
"black!70"};
// Header
printf("%% Layout: "); print(layout); printf("\n");
printf(latex_header);
// Layout
for (int i = 0; i < size<0>(layout); ++i) {
for (int j = 0; j < size<1>(layout); ++j) {
int idx = layout(i,j);
printf("\\node[box,fill=%s] at (%d,%d) {%d};\n",
color_map[idx % 8],
i, j,
idx);
}
}
// Labels
for (int i = 0, j = -1; i < size<0>(layout); ++i) {
printf("\\node at (%d,%d) {\\Large{\\texttt{%d}}};\n", i, j, i);
}
for (int j = 0, i = -1; j < size<1>(layout); ++j) {
printf("\\node at (%d,%d) {\\Large{\\texttt{%d}}};\n", i, j, j);
}
// Footer
printf(latex_footer);
}
// Generic ThrVal 2D Layout to Latex TIKZ -- 8-value color coded by thread
template <class Layout, class ThrID>
CUTE_HOST_DEVICE
void
print_latex(Layout const& layout, ThrID const& thr) // (m,n) -> (tid,vid) and tid -> thr_idx
{
CUTE_STATIC_ASSERT_V(rank(layout) == Int<2>{});
char const* latex_header =
"\\documentclass[convert]{standalone}\n"
"\\usepackage{tikz}\n\n"
"\\begin{document}\n"
"\\begin{tikzpicture}[x={(0cm,-1cm)},y={(1cm,0cm)},box/.style={rectangle,draw=black,thick,minimum size=1cm,anchor=center}]\n\n";
char const* latex_footer =
"\\end{tikzpicture}\n"
"\\end{document}\n";
char const* color_map[8] = {"{rgb,255:red,175;green,175;blue,255}",
"{rgb,255:red,175;green,255;blue,175}",
"{rgb,255:red,255;green,255;blue,175}",
"{rgb,255:red,255;green,175;blue,175}",
"{rgb,255:red,210;green,210;blue,255}",
"{rgb,255:red,210;green,255;blue,210}",
"{rgb,255:red,255;green,255;blue,210}",
"{rgb,255:red,255;green,210;blue,210}"};
// Header
printf("%% layout: "); print(layout); printf("\n");
printf("%% thrid: "); print(thr); printf("\n\n");
printf(latex_header);
// Layout
for (int i = 0; i < size<0>(layout); ++i) {
for (int j = 0; j < size<1>(layout); ++j) {
int thrid = layout(i,j) % size(thr);
int val_idx = layout(i,j) / size(thr);
int thr_idx = thr(thrid);
printf("\\node[box,fill=%s] at (%d,%d) {\\shortstack{T%d \\\\ V%d}};\n",
color_map[thr_idx % 8],
i, j,
thr_idx, val_idx);
}
}
// Labels
for (int i = 0, j = -1; i < size<0>(layout); ++i) {
printf("\\node at (%d,%d) {\\Large{\\texttt{%d}}};\n", i, j, i);
}
for (int j = 0, i = -1; j < size<1>(layout); ++j) {
printf("\\node at (%d,%d) {\\Large{\\texttt{%d}}};\n", i, j, j);
}
// Footer
printf(latex_footer);
}
} // end namespace cute
//
// Extended Layouts
//
#include <cute/swizzle_layout.hpp>
|