Spaces:
Sleeping
Sleeping
File size: 8,583 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/util/type_traits.hpp>
#include <cute/numeric/numeric_types.hpp> // sizeof_bits
namespace cute
{
//
// C++20 <iterator> iterator_traits
//
namespace detail {
// Default reference type of an iterator
template <class T, class = void>
struct iter_ref { using type = decltype(*declval<T&>()); };
// Prefer to propagate ::reference
template <class T>
struct iter_ref<T,void_t<typename T::reference>> { using type = typename T::reference; };
} // end namespace detail
template <class T>
using iter_reference = detail::iter_ref<T>;
template <class T>
using iter_reference_t = typename iter_reference<T>::type;
namespace detail {
// Default element_type of an iterator
template <class T, class = void>
struct iter_e { using type = remove_reference_t<typename iter_ref<T>::type>; };
// Prefer to propagate ::element_type
template <class T>
struct iter_e<T,void_t<typename T::element_type>> { using type = typename T::element_type; };
} // end namespace detail
template <class T>
using iter_element = detail::iter_e<T>;
template <class T>
using iter_element_t = typename iter_element<T>::type;
namespace detail {
// Default value_type of an iterator
template <class T, class = void>
struct iter_v { using type = remove_cv_t<typename iter_e<T>::type>; };
// Prefer to propagate ::value_type
template <class T>
struct iter_v<T,void_t<typename T::value_type>> { using type = typename T::value_type; };
} // end namespace detail
template <class T>
using iter_value = detail::iter_v<T>;
template <class T>
using iter_value_t = typename iter_value<T>::type;
template <class Iterator>
struct iterator_traits {
using reference = iter_reference_t<Iterator>;
using element_type = iter_element_t<Iterator>;
using value_type = iter_value_t<Iterator>;
};
//
// has_dereference to determine if a type is an iterator concept
//
namespace detail {
template <class T, class = void>
struct has_dereference : CUTE_STL_NAMESPACE::false_type {};
template <class T>
struct has_dereference<T, void_t<decltype(*declval<T&>())>> : CUTE_STL_NAMESPACE::true_type {};
} // end namespace detail
template <class T>
using has_dereference = detail::has_dereference<T>;
//
// raw_pointer_cast
//
template <class T>
CUTE_HOST_DEVICE constexpr
T*
raw_pointer_cast(T* ptr) {
return ptr;
}
//
// A very simplified iterator adaptor.
// Derived classed may override methods, but be careful to reproduce interfaces exactly.
// Clients should never have an instance of this class. Do not write methods that take this as a param.
//
template <class Iterator, class DerivedType>
struct iter_adaptor
{
using iterator = Iterator;
using reference = typename iterator_traits<iterator>::reference;
using element_type = typename iterator_traits<iterator>::element_type;
using value_type = typename iterator_traits<iterator>::value_type;
iterator ptr_;
CUTE_HOST_DEVICE constexpr
iter_adaptor(iterator ptr = {}) : ptr_(ptr) {}
CUTE_HOST_DEVICE constexpr
reference operator*() const { return *ptr_; }
template <class Index>
CUTE_HOST_DEVICE constexpr
reference operator[](Index const& i) const { return ptr_[i]; }
template <class Index>
CUTE_HOST_DEVICE constexpr
DerivedType operator+(Index const& i) const { return {ptr_ + i}; }
CUTE_HOST_DEVICE constexpr
iterator get() const { return ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator==(DerivedType const& x, DerivedType const& y) { return x.ptr_ == y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator!=(DerivedType const& x, DerivedType const& y) { return x.ptr_ != y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator< (DerivedType const& x, DerivedType const& y) { return x.ptr_ < y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator<=(DerivedType const& x, DerivedType const& y) { return x.ptr_ <= y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator> (DerivedType const& x, DerivedType const& y) { return x.ptr_ > y.ptr_; }
CUTE_HOST_DEVICE constexpr
friend bool operator>=(DerivedType const& x, DerivedType const& y) { return x.ptr_ >= y.ptr_; }
};
template <class I, class D>
CUTE_HOST_DEVICE constexpr
auto
raw_pointer_cast(iter_adaptor<I,D> const& x) {
return raw_pointer_cast(x.ptr_);
}
//
// counting iterator -- quick and dirty
//
template <class T = int>
struct counting_iterator
{
using index_type = T;
using value_type = T;
using reference = T;
index_type n_;
CUTE_HOST_DEVICE constexpr
counting_iterator(index_type n = 0) : n_(n) {}
CUTE_HOST_DEVICE constexpr
index_type operator*() const { return n_; }
CUTE_HOST_DEVICE constexpr
index_type operator[](index_type i) const { return n_ + i; }
CUTE_HOST_DEVICE constexpr
counting_iterator operator+(index_type i) const { return {n_ + i}; }
CUTE_HOST_DEVICE constexpr
counting_iterator& operator++() { ++n_; return *this; }
CUTE_HOST_DEVICE constexpr
counting_iterator operator++(int) { counting_iterator ret = *this; ++n_; return ret; }
CUTE_HOST_DEVICE constexpr
friend bool operator==(counting_iterator const& x, counting_iterator const& y) { return x.n_ == y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator!=(counting_iterator const& x, counting_iterator const& y) { return x.n_ != y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator< (counting_iterator const& x, counting_iterator const& y) { return x.n_ < y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator<=(counting_iterator const& x, counting_iterator const& y) { return x.n_ <= y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator> (counting_iterator const& x, counting_iterator const& y) { return x.n_ > y.n_; }
CUTE_HOST_DEVICE constexpr
friend bool operator>=(counting_iterator const& x, counting_iterator const& y) { return x.n_ >= y.n_; }
};
template <class T>
CUTE_HOST_DEVICE constexpr
T
raw_pointer_cast(counting_iterator<T> const& x) {
return x.n_;
}
//
// Display utilities
//
template <class T>
CUTE_HOST_DEVICE void print(T const* const ptr)
{
printf("ptr["); print(sizeof_bits<T>::value); printf("b](%p)", ptr);
}
template <class T>
CUTE_HOST_DEVICE void print(counting_iterator<T> ptr)
{
printf("counting_iter("); print(ptr.n_); printf(")");
}
#if !defined(__CUDACC_RTC__)
template <class T>
CUTE_HOST std::ostream& operator<<(std::ostream& os, counting_iterator<T> ptr)
{
return os << "counting_iter(" << ptr.n_ << ")";
}
#endif // !defined(__CUDACC_RTC__)
} // end namespace cute
|