Spaces:
Sleeping
Sleeping
File size: 15,988 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/container/tuple.hpp>
#include <cute/algorithm/tuple_algorithms.hpp>
#include <cute/numeric/integer_sequence.hpp>
#include <cute/numeric/integral_constant.hpp>
#include <cute/numeric/math.hpp>
namespace cute
{
// A generic Swizzle functor
/* 0bxxxxxxxxxxxxxxxYYYxxxxxxxZZZxxxx
* ^--^ MBase is the number of least-sig bits to keep constant
* ^-^ ^-^ BBits is the number of bits in the mask
* ^---------^ SShift is the distance to shift the YYY mask
* (pos shifts YYY to the right, neg shifts YYY to the left)
*
* e.g. Given
* 0bxxxxxxxxxxxxxxxxYYxxxxxxxxxZZxxx
* the result is
* 0bxxxxxxxxxxxxxxxxYYxxxxxxxxxAAxxx where AA = ZZ xor YY
*/
template <int BBits, int MBase, int SShift = BBits>
struct Swizzle
{
static constexpr int num_bits = BBits;
static constexpr int num_base = MBase;
static constexpr int num_shft = SShift;
static_assert(num_base >= 0, "MBase must be positive.");
static_assert(num_bits >= 0, "BBits must be positive.");
static_assert(abs(num_shft) >= num_bits, "abs(SShift) must be more than BBits.");
// using 'int' type here to avoid unintentially casting to unsigned... unsure.
using bit_msk = cute::constant<int, (1 << num_bits) - 1>;
using yyy_msk = cute::constant<int, bit_msk{} << (num_base + max(0,num_shft))>;
using zzz_msk = cute::constant<int, bit_msk{} << (num_base - min(0,num_shft))>;
using msk_sft = cute::constant<int, num_shft>;
static constexpr uint32_t swizzle_code = uint32_t(yyy_msk{} | zzz_msk{});
template <class Offset>
CUTE_HOST_DEVICE constexpr static
auto
apply(Offset const& offset)
{
return offset ^ shiftr(offset & yyy_msk{}, msk_sft{}); // ZZZ ^= YYY
}
template <class Offset>
CUTE_HOST_DEVICE constexpr
auto
operator()(Offset const& offset) const
{
return apply(offset);
}
template <int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
operator==(Swizzle<B,M,S> const&) const
{
return B == BBits && M == MBase && S == SShift;
}
};
//
// make_swizzle<0b1000, 0b0100>() -> Swizzle<1,2,1>
// make_swizzle<0b11000000, 0b00000110>() -> Swizzle<2,1,5>
//
template <uint32_t Y, uint32_t Z>
CUTE_HOST_DEVICE constexpr
auto
make_swizzle()
{
constexpr uint32_t BZ = popcount(Y); // Number of swizzle bits
constexpr uint32_t BY = popcount(Z); // Number of swizzle bits
static_assert(BZ == BY, "Number of bits in Y and Z don't match");
constexpr uint32_t TZ_Y = countr_zero(Y); // Number of trailing zeros in Y
constexpr uint32_t TZ_Z = countr_zero(Z); // Number of trailing zeros in Z
constexpr uint32_t M = cute::min(TZ_Y, TZ_Z) % 32;
constexpr int32_t S = int32_t(TZ_Y) - int32_t(TZ_Z); // Difference in trailing zeros
static_assert((Y | Z) == Swizzle<BZ,M,S>::swizzle_code, "Something went wrong.");
return Swizzle<BZ,M,S>{};
}
template <int B0, int M0, int S0,
int B1, int M1, int S1>
CUTE_HOST_DEVICE constexpr
auto
composition(Swizzle<B0,M0,S0>, Swizzle<B1,M1,S1>)
{
static_assert(S0 == S1, "Can only merge swizzles of the same shift.");
constexpr uint32_t Y = Swizzle<B0,M0,S0>::yyy_msk::value ^ Swizzle<B1,M1,S1>::yyy_msk::value;
constexpr uint32_t Z = Swizzle<B0,M0,S0>::zzz_msk::value ^ Swizzle<B1,M1,S1>::zzz_msk::value;
return make_swizzle<Y,Z>();
//return ComposedFn<Swizzle<B0,M0,S0>, Swizzle<B1,M1,S1>>{};
}
//
// Utility for slicing and swizzle "offsets"
//
// For swizzle functions, it is often needed to keep track of which bits are
// consumed and which bits are free. Furthermore, it is useful to know whether
// each of these bits is known statically or dynamically.
// MixedBits is an 32-bit unsigned integer class where some bits are known statically
// and some bits are known dynamically. These sets of bits are disjoint and it is
// known statically which bits are known dynamically.
// MixedBits can only be manipulated through bitwise operations
// Abstract value: StaticInt | (dynamic_int_ & StaticFlags)
template <uint32_t StaticInt,
uint32_t StaticFlags> // 0: static, 1: dynamic
struct MixedBits
{
// Representation invariants
static_assert(StaticFlags != 0, "Should be at least one dynamic bit in MixedBits.");
static_assert((StaticInt & StaticFlags) == 0, "No static/dynamic overlap allowed in MixedBits.");
uint32_t dynamic_int_;
// assert((dynamic_int_ & ~StaticFlags) == 0);
CUTE_HOST_DEVICE constexpr operator uint32_t() const noexcept { return StaticInt | dynamic_int_; }
};
// Return a value representing (C<s>{} | (d & C<f>)) potentially using MixedBits to track s and f.
// This maker does allow ((s & f) != 0) and enforces the MixedBits invariant before creation.
template <auto s, class DynamicType, auto f>
CUTE_HOST_DEVICE constexpr
auto
make_mixed_bits(C<s>, DynamicType const& d, C<f>)
{
static_assert(is_integral<DynamicType>::value);
constexpr uint32_t new_f = uint32_t(f) & ~uint32_t(s); // StaticBits take precedence, M<0,f>{d} | C<s>{}
if constexpr (new_f == 0 || is_static<DynamicType>::value) {
return C<s>{} | (d & C<new_f>{}); // Just return a static int
} else {
return MixedBits<s, new_f>{uint32_t(d) & new_f}; // MixedBits
}
CUTE_GCC_UNREACHABLE;
}
//
// Operators
//
// Equality
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator==(MixedBits<S0,F0> const& m, C<S1>)
{
return (S0 == (uint32_t(S1) & ~F0)) && (m.dynamic_int_ == (uint32_t(S1) & F0));
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator==(C<S1> s, MixedBits<S0,F0> const& m)
{
return m == s;
}
// Bitwise AND
template <uint32_t S0, uint32_t F0,
uint32_t S1, uint32_t F1>
CUTE_HOST_DEVICE constexpr
auto
operator&(MixedBits<S0,F0> const& m0, MixedBits<S1,F1> const& m1)
{
// Truth table for (S0,D0,F0) & (S1,D1,F1) -> (S,D,F)
// S0D0F0 | 0X0 | 001 | 011 | 1X0 |
// S1D1F1
// 0X0 | 0X0 | 0X0 | 0X0 | 0X0 |
// 001 | 0X0 | 001 | 001 | 001 |
// 011 | 0X0 | 001 | 011 | 011 |
// 1X0 | 0X0 | 001 | 011 | 1X0 |
return make_mixed_bits(C<S0 & S1>{},
//(S0 | m0.dynamic_int_) & (S1 | m1.dynamic_int_),
((S1 & F0) & m0.dynamic_int_) | ((S0 & F1) & m1.dynamic_int_) | (m0.dynamic_int_ & m1.dynamic_int_),
C<(S1 & F0) | (S0 & F1) | (F0 & F1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator&(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<S0 & uint32_t(S1)>{},
m.dynamic_int_,
C<F0 & uint32_t(S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator&(C<S1> s, MixedBits<S0,F0> const& m)
{
return m & s;
}
// Bitwise OR
template <uint32_t S0, uint32_t F0,
uint32_t S1, uint32_t F1>
CUTE_HOST_DEVICE constexpr
auto
operator|(MixedBits<S0,F0> const& m0, MixedBits<S1,F1> const& m1)
{
// Truth table for (S0,D0,F0) | (S1,D1,F1) -> (S,D,F)
// S0D0F0 | 0X0 | 001 | 011 | 1X0 |
// S1D1F1
// 0X0 | 0X0 | 001 | 011 | 1X0 |
// 001 | 001 | 001 | 011 | 1X0 |
// 011 | 011 | 011 | 011 | 1X0 |
// 1X0 | 1X0 | 1X0 | 1X0 | 1X0 |
return make_mixed_bits(C<S0 | S1>{},
((~S1 & F0) & m0.dynamic_int_) | ((~S0 & F1) & m1.dynamic_int_),
C<(~S0 & F1) | (~S1 & F0)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator|(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<S0 | uint32_t(S1)>{},
m.dynamic_int_,
C<F0 & ~uint32_t(S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator|(C<S1> s, MixedBits<S0,F0> const& m)
{
return m | s;
}
// Bitwise XOR
template <uint32_t S0, uint32_t F0,
uint32_t S1, uint32_t F1>
CUTE_HOST_DEVICE constexpr
auto
operator^(MixedBits<S0,F0> const& m0, MixedBits<S1,F1> const& m1)
{
// Truth table for (S0,D0,F0) ^ (S1,D1,F1) -> (S,D,F)
// S0D0F0 | 0X0 | 001 | 011 | 1X0 |
// S1D1F1
// 0X0 | 0X0 | 001 | 011 | 1X0 |
// 001 | 001 | 001 | 011 | 011 |
// 011 | 011 | 011 | 001 | 001 |
// 1X0 | 1X0 | 011 | 001 | 0X0 |
return make_mixed_bits(C<(~S0 & S1 & ~F0) | (S0 & ~S1 & ~F1)>{},
(S0 | m0.dynamic_int_) ^ (S1 | m1.dynamic_int_),
C<F0 | F1>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator^(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<(~S0 & uint32_t(S1) & ~F0) | (S0 & ~uint32_t(S1))>{},
(S0 | m.dynamic_int_) ^ uint32_t(S1),
C<F0>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator^(C<S1> s, MixedBits<S0,F0> const& m)
{
return m ^ s;
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator<<(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<(S0 << S1)>{},
m.dynamic_int_ << S1,
C<(F0 << S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator>>(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<(S0 >> S1)>{},
m.dynamic_int_ >> S1,
C<(F0 >> S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
shiftl(MixedBits<S0,F0> const& m, C<S1> s)
{
if constexpr (S1 >= 0) {
return m << s;
} else {
return m >> -s;
}
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
shiftr(MixedBits<S0,F0> const& m, C<S1> s)
{
if constexpr (S1 >= 0) {
return m >> s;
} else {
return m << -s;
}
}
//
// upcast and downcast
//
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
safe_div(MixedBits<S0,F0> const& m, C<S1> s)
{
static_assert(has_single_bit(uint32_t(S1)), "Only divide MixedBits by powers of two.");
return make_mixed_bits(safe_div(C<S0>{}, s),
safe_div(m.dynamic_int_, s),
safe_div(C<F0>{}, s));
}
template <uint32_t N, uint32_t S0, uint32_t F0>
CUTE_HOST_DEVICE constexpr
auto
upcast(MixedBits<S0,F0> const& m)
{
static_assert(has_single_bit(N), "Only divide MixedBits by powers of two.");
return safe_div(m, C<N>{});
}
template <uint32_t N, class T, __CUTE_REQUIRES(cute::is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
upcast(T const& m)
{
return safe_div(m, C<N>{});
}
template <uint32_t N, uint32_t S0, uint32_t F0>
CUTE_HOST_DEVICE constexpr
auto
downcast(MixedBits<S0,F0> const& m)
{
static_assert(has_single_bit(N), "Only scale MixedBits by powers of two.");
return make_mixed_bits(C<S0 * N>{},
m.dynamic_int_ * N,
C<F0 * N>{});
}
template <uint32_t N, class T, __CUTE_REQUIRES(cute::is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
downcast(T const& m)
{
return m * C<N>{};
}
//
// Convert a Pow2Layout+Coord to a MixedBits
//
template <class Shape, class Stride, class Coord>
CUTE_HOST_DEVICE constexpr
auto
to_mixed_bits(Shape const& shape, Stride const& stride, Coord const& coord)
{
if constexpr (is_tuple<Shape>::value && is_tuple<Stride>::value && is_tuple<Coord>::value) {
static_assert(tuple_size<Shape>::value == tuple_size<Stride>::value, "Mismatched ranks");
static_assert(tuple_size<Shape>::value == tuple_size<Coord >::value, "Mismatched ranks");
return transform_apply(shape, stride, coord, [](auto const& s, auto const& d, auto const& c) { return to_mixed_bits(s,d,c); },
[](auto const&... a) { return (a ^ ...); });
} else if constexpr (is_integral<Shape>::value && is_integral<Stride>::value && is_integral<Coord>::value) {
static_assert(decltype(shape*stride)::value == 0 || has_single_bit(decltype(shape*stride)::value), "Requires pow2 shape*stride.");
return make_mixed_bits(Int<0>{}, coord * stride, (shape - Int<1>{}) * stride);
} else {
static_assert(is_integral<Shape>::value && is_integral<Stride>::value && is_integral<Coord>::value, "Either Shape, Stride, and Coord must be all tuples, or they must be all integral (in the sense of cute::is_integral).");
}
CUTE_GCC_UNREACHABLE;
}
template <class Layout, class Coord>
CUTE_HOST_DEVICE constexpr
auto
to_mixed_bits(Layout const& layout, Coord const& coord)
{
return to_mixed_bits(layout.shape(), layout.stride(), idx2crd(coord, layout.shape()));
}
//
// Display utilities
//
template <int B, int M, int S>
CUTE_HOST_DEVICE void print(Swizzle<B,M,S> const&)
{
printf("Sw<%d,%d,%d>", B, M, S);
}
template <uint32_t S, uint32_t F>
CUTE_HOST_DEVICE void print(MixedBits<S,F> const& m)
{
printf("M_%u|(%u&%u)=%u", S, m.dynamic_int_, F, uint32_t(m));
}
#if !defined(__CUDACC_RTC__)
template <int B, int M, int S>
CUTE_HOST std::ostream& operator<<(std::ostream& os, Swizzle<B,M,S> const&)
{
return os << "Sw<" << B << "," << M << "," << S << ">";
}
template <uint32_t S, class D, uint32_t F>
CUTE_HOST std::ostream& operator<<(std::ostream& os, MixedBits<S,F> const& m)
{
return os << "M_" << S << "|(" << m.dynamic_int_ << "&" << F << ")=" << uint32_t(m);
}
#endif // !defined(__CUDACC_RTC__)
} // end namespace cute
|