Spaces:
Sleeping
Sleeping
File size: 21,915 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/layout.hpp>
#include <cute/layout_composed.hpp>
#include <cute/swizzle.hpp>
/* Specialized functionality for a ComposedLayout of the form
* InvolutionFn o Offset o LayoutB
* where the InvolutionFn is a Swizzle<B,M,S> and is not linear (hence the need for the Offset).
*
* Because these are specializations for core functions of ComposedLayout, these Swizzle Layouts
* provide similar functionality to Layout including tiling, partitioning,
* coordinate-to-index mapping and layout manipulations, but are not considered "normal" layouts.
* For example, these provide shape() and size() functions, but do not provide stride() functions.
*
* Furthermore, each of these specializations uses Swizzle<>-specific knowledge in its implementation and
* attempts to decay itself to a normal-layout with dynamic or static strides when certain slicing conditions
* are met. This is possible by determining the subdomain of the Swizzle<> function that is identity and
* testing if LayoutB's codomain is contained within it. In general, MizedBits is used as the Offset to track
* statically-vs-dynamically known bits in the Offset to improve the decay to static or dynamic normal layouts.
*/
namespace cute
{
//
// Constructors
//
template <int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
make_layout(Swizzle<B,M,S> const& sxor)
{
return composition(sxor, Layout<Int<M+B+abs(S)>,Int<1>>{});
}
namespace detail {
template <int B, int M, int S, class OldShape, class OldStride, class NewShape, class NewStride>
CUTE_HOST_DEVICE constexpr
auto
transfer_swizzle(Layout<OldShape,OldStride> const& old_layout,
Layout<NewShape,NewStride> const& new_layout)
{
// Our goal is to determine a new swizzle for the strides in new_layout for consistent vectorizations
// This is accomplished by identifying
// S o L :=: S? o L*
// We identify the "active" portion of S by computing (P o L)(c*) where P is a projection generated by S
// Then that active identifier is transformed through the layouts:
// L*(L[(P o L)(c*)])
// which is a new swizzle identifier for S?, the new swizzle
// Projections of the swizzle layout for composition, P
auto swizzle_only_zy = make_layout(make_shape (Int<(1 << M)>{}, Int<(1 << B)>{}, Int<(1 << (abs(S)-B))>{}, Int<(1 << B )>{}, Int<1>{}),
make_stride( Int<0>{}, Int<(1 << M)>{}, Int<0>{}, Int<(1 << (M+abs(S)))>{}, Int<0>{}));
// Compose with the tile to get the swizzle projection, P o L [The Z and Y contributing portions of L]
auto layout_only_zy = composition(swizzle_only_zy, old_layout);
// Transform the end coordinate to get the active bits of the swizzle, (P o L)(c*)
auto swizzle_active_bits = layout_only_zy(size(layout_only_zy)-Int<1>{});
// Get the Z bit and the Y bits -- keep only those that are active in Z *and* Y
auto zzz_msk = typename Swizzle<B,M,S>::zzz_msk{};
auto yyy_msk = typename Swizzle<B,M,S>::yyy_msk{};
auto msk_sft = typename Swizzle<B,M,S>::msk_sft{};
auto active_Z = swizzle_active_bits & shiftr(swizzle_active_bits, msk_sft) & zzz_msk;
auto active_Y = swizzle_active_bits & shiftr(swizzle_active_bits, -msk_sft) & yyy_msk;
// Pass the identifiers through the old layout and new layout to make a new swizzle identifier, L*(L[(P o L)(c*)])
auto new_active_Z = new_layout(old_layout.get_1d_coord(active_Z));
auto new_active_Y = new_layout(old_layout.get_1d_coord(active_Y));
// Use this new swizzle identifier to construct the new swizzle for new_layout
// (this also makes sure it's a "valid" swizzle that Swizzle can represent)
return composition(make_swizzle<new_active_Y,new_active_Z>(), new_layout);
}
} // end namespace detail
template <int B, int M, int S, class Offset, class Layout>
CUTE_HOST_DEVICE constexpr
auto
make_fragment_like(ComposedLayout<Swizzle<B,M,S>,Offset,Layout> const& layout)
{
return detail::transfer_swizzle<B,M,S>(layout.layout_b(), make_fragment_like(layout.layout_b()));
}
//
// Utilities
//
namespace detail {
// Get just the Swizzle part of a composed layout.
template <int B, int M, int S, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
get_swizzle_portion(ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB>)
{
return Swizzle<B,M,S>{};
}
// A non-swizzled layout's "Swizzle part" is the identity swizzle.
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
get_swizzle_portion(Layout<Shape,Stride>)
{
return Swizzle<0,4,3>{};
}
// Get the "non-swizzle" part of a composed layout,
// which is the underlying (non-composed) Layout.
template <int B, int M, int S, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
get_nonswizzle_portion(ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& slayout)
{
return slayout.layout_b();
}
// The non-swizzle part of a non-swizzled layout is just the Layout.
template <class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
get_nonswizzle_portion(Layout<Shape,Stride> const& slayout)
{
return slayout;
}
} // namespace detail
//
// Slice a Swizzled ComposedLayout
//
namespace detail {
template <class IntZ, class IntY, class Offset, int... I>
CUTE_HOST_DEVICE constexpr
auto
make_swizzle_strides(true_type,
IntZ const& Z,
IntY const& Y,
Offset const& offset,
int_sequence<I...>)
{
// Below is an optimized/compressed version of:
//return cute::make_tuple((swizzle(offset + Z*Int<(1 << I)>{}) - swizzle(offset))...);
// with knowledge of Swizzle, I... ranges for each B bits,
// and the layout won't slice along z-bits that are already set
// y\z 0 1
// 0 Z DC
// 1 -Z DC
return cute::make_tuple(conditional_return((offset & (Y << Int<I>{})) == Int<0>{}, Z << Int<I>{}, -(Z << Int<I>{}))...);
}
template <class IntZ, class IntY, class Offset, int... I>
CUTE_HOST_DEVICE constexpr
auto
make_swizzle_strides(false_type,
IntZ const& Z,
IntY const& Y,
Offset const& offset,
int_sequence<I...>)
{
// Below is an optimized/compressed version of:
//return cute::make_tuple((swizzle(offset + Y*Int<(1 << I)>{}) - swizzle(offset))...);
// with knowledge of Swizzle, I... ranges for each B bits,
// and the layout won't slice along y-bits that are already set
// y\z 0 1
// 0 Y+Z Y-Z
// 1 DC DC
return cute::make_tuple(conditional_return((offset & (Z << Int<I>{})) == Int<0>{}, (Y+Z) << Int<I>{}, (Y-Z) << Int<I>{})...);
}
} // end namespace detail
template <class Coord, int B, int M, int S, class Offset, class Layout>
CUTE_HOST_DEVICE constexpr
auto
slice_and_offset(Coord const& coord, ComposedLayout<Swizzle<B,M,S>,Offset,Layout> const& layout)
{
if constexpr (all_underscore<Coord>::value) {
// Skip the expensive/complicated attempt to decay to a normal layout and just reshape
return cute::make_tuple(composition(layout.layout_a(), layout.offset(), slice(coord, layout.layout_b())), Int<0>{});
} else {
// Projections of the swizzle layout for composition
auto sw = make_layout(make_shape(Int<(1 << M)>{}, Int<(1 << B)>{}, Int<(1 << (abs(S)-B))>{}, Int<(1 << B)>{}, Int<1>{}));
auto swizzle_anti_zy = make_layout(shape(sw),
make_stride(stride<0>(sw), Int<0>{}, stride<2>(sw), Int<0>{}, size(sw)));
auto swizzle_only_zy = make_layout(shape(sw),
make_stride( Int<0>{}, stride<1>(sw), Int<0>{}, stride<3>(sw), Int<0>{}));
// The portion of the layout that is not yet consumed
auto sliced_layout = slice(coord, layout.layout_b());
// If the sliced_layout hits two bits that are swizzled together, then don't attempt to decay
// Compose with the layout to get the swizzle projection, P o L [The Z and Y contributing portions of L]
// (this also tests that shape/stride of layout compose with swizzle)
auto sliced_layout_only_zy = composition(swizzle_only_zy, sliced_layout);
// Transform the end coordinate to get the active bits of the swizzle, (P o L)(c*)
auto swizzle_active_bits = sliced_layout_only_zy(size(sliced_layout_only_zy)-Int<1>{});
// Determine if any active bits collide under the swizzle
auto hit_ZandY = !(swizzle_active_bits & ~layout.layout_a()(swizzle_active_bits));
// The portion of the layout that we are consuming now
auto diced_layout = dice(coord, layout.layout_b());
auto diced_coord = dice(coord, coord);
auto diced_layout_anti_zy = composition(swizzle_anti_zy, diced_layout);
auto diced_layout_only_zy = composition(swizzle_only_zy, diced_layout);
// New swizzle and offset
auto swizzle = layout.layout_a();
// offset_only_zy interacts with swizzle and gets accumulated with layout.offset()
// being careful about the static/dynamic contributions from diced_layout and diced_coord
auto offset_only_zy = layout.offset() ^ to_mixed_bits(diced_layout_only_zy, diced_coord);
// offset_anti_zy always gets passed through, no interaction with swizzle
auto offset_anti_zy = diced_layout_anti_zy(diced_coord);
// If Layout's codomain hits on Y AND Z, then it's not reducible
// If Layout's codomain hits on Y XOR Z, then it's dynamic-normal
// If Layout's codomain hits on neither Y NOR Z, then it's static-normal
// Test the sliced layout for hit_X & hit_Y for potential decay
if constexpr (is_constant<false, decltype(hit_ZandY)>::value)
{ // Hits on Y AND Z, so it's not reducible
return cute::make_tuple(composition(swizzle, offset_only_zy, sliced_layout), offset_anti_zy);
} else
{ // Misses on Y or Z, so it's static-normal or dynamic-normal
// Lowest bit of the Z and Y masks
auto Z = typename Swizzle<B,M,S>::zzz_msk{} & -typename Swizzle<B,M,S>::zzz_msk{};
auto Y = typename Swizzle<B,M,S>::yyy_msk{} & -typename Swizzle<B,M,S>::yyy_msk{};
auto stride_lo = detail::make_swizzle_strides(Z < Y, Z, Y, offset_only_zy, make_int_sequence<B>{});
auto stride_hi = detail::make_swizzle_strides(Z > Y, Z, Y, offset_only_zy, make_int_sequence<B>{});
// Construct a (dynamic) layout that we can perform the composition with
auto swizzle_layout = make_layout(make_shape (Int<(1 << M)>{}, repeat<B>(Int<2>{}), Int<(1 << (abs(S)-B))>{}, repeat<B>(Int<2>{}), Int< 1>{}),
make_stride(Int< 1>{}, stride_lo, Int<(1 << (M+B))>{}, stride_hi , Int<(1 << (M+B+abs(S)))>{}));
// Decay to a normal layout with offset
return cute::make_tuple(composition(swizzle_layout, sliced_layout),
swizzle(offset_only_zy) + offset_anti_zy);
}
}
CUTE_GCC_UNREACHABLE;
}
//
// composition
//
// Ignore identity case
template <int M, int S,
class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
composition(Swizzle<0,M,S> const&,
Int<0> const&,
Layout<Shape,Stride> const& layout)
{
return layout;
}
template <int B, int M, int S,
class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
composition(Swizzle<B,M,S> const& sxor,
Layout<Shape,Stride> const& layout)
{
return composition(sxor, Int<0>{}, layout);
}
template <class ShapeA, class StrideA,
int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
composition(Layout<ShapeA,StrideA> const& a,
Swizzle<B,M,S> const& b)
{
// Get the Z bits and the Y bits
auto active_Y = a(typename Swizzle<B,M,S>::yyy_msk{});
auto active_Z = a(typename Swizzle<B,M,S>::zzz_msk{});
// Works in simple cases... but could be greatly generalized
return composition(make_swizzle<active_Y,active_Z>(), a);
}
//
// inverse
//
// Specialization to attempt to pass-through the Swizzle back to the left -- Needed?
template <int B, int M, int S, class Offset, class Layout>
CUTE_HOST_DEVICE constexpr
auto
right_inverse(ComposedLayout<Swizzle<B,M,S>,Offset,Layout> const& layout)
{
if constexpr (is_constant<0, Offset>::value) {
return composition(right_inverse(layout.layout_b()), layout.layout_a());
} else {
return composition(right_inverse(layout.layout_b()), right_inverse(layout.offset()), right_inverse(layout.layout_a()));
}
}
// Specialization to attempt to pass-through the Swizzle back to the left -- Needed?
template <int B, int M, int S, class Offset, class Layout>
CUTE_HOST_DEVICE constexpr
auto
left_inverse(ComposedLayout<Swizzle<B,M,S>,Offset,Layout> const& layout)
{
if constexpr (is_constant<0, Offset>::value) {
return composition(left_inverse(layout.layout_b()), layout.layout_a());
} else {
return composition(left_inverse(layout.layout_b()), left_inverse(layout.offset()), left_inverse(layout.layout_a()));
}
}
template <int B, int M, int S>
CUTE_HOST_DEVICE constexpr
Swizzle<B,M,S>
right_inverse(Swizzle<B,M,S> const& sw)
{
return sw;
}
template <int B, int M, int S>
CUTE_HOST_DEVICE constexpr
Swizzle<B,M,S>
left_inverse(Swizzle<B,M,S> const& sw)
{
return sw;
}
// Kludge -- Probably want an OffsetFn<T> here instead
template <class T, __CUTE_REQUIRES(is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
right_inverse(T const& t)
{
return -t;
}
// Kludge -- Probably want an OffsetFn<T> here instead
template <class T, __CUTE_REQUIRES(is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
left_inverse(T const& t)
{
return -t;
}
//
// Upcast and Downcast
//
template <int N, int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
upcast(Swizzle<B,M,S> const& swizzle)
{
static_assert(has_single_bit(N), "N must be a power of two");
constexpr int log2_n = bit_width(uint32_t(N)) - 1;
constexpr int NewM = M - log2_n;
if constexpr (NewM >= 0) {
return Swizzle<B,NewM,S>{};
} else {
return Swizzle<cute::max(B+NewM,0), 0, S>{};
}
CUTE_GCC_UNREACHABLE;
}
template <int N, int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
downcast(Swizzle<B,M,S> const& swizzle)
{
static_assert(has_single_bit(N), "N must be a power of two");
constexpr int log2_n = bit_width(uint32_t(N)) - 1;
return Swizzle<B,(M + log2_n),S>{};
}
template <class OldType, class NewType,
int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
recast_layout(Swizzle<B,M,S> const& swizzle)
{
using scale = decltype(trait_ratio(sizeof_bits<NewType>{}, sizeof_bits<OldType>{}));
if constexpr (scale::num == 1 && scale::den == 1) {
return swizzle;
}
else if constexpr (scale::num == 1) {
return downcast<scale::den>(swizzle);
}
else if constexpr (scale::den == 1) {
return upcast<scale::num>(swizzle);
}
else {
static_assert(dependent_false<scale>, "Recast not supported.");
}
CUTE_GCC_UNREACHABLE;
}
//
// Other operations
//
template <int B, int M, int S, class Offset, class LayoutB, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
max_common_layout(ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& a,
Layout<Shape,Stride> const& b)
{
auto common = max_common_layout(a.layout_b(), b);
auto base = Int<(1 << M)>{};
if constexpr (base < size(common)) {
return common.compose(base); // Truncate common to size base
} else {
return common;
}
}
template <class Shape, class Stride, int B, int M, int S, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
max_common_layout(Layout<Shape,Stride> const& a,
ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& b)
{
return max_common_layout(b, a);
}
template <int B, int M, int S, class Offset, class LayoutB, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
max_common_vector(ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& a,
Layout<Shape,Stride> const& b)
{
// This assumes that Offset is in the YZ domain of the Swizzle...
return cute::min(Int<(1 << M)>{}, max_common_vector(a.layout_b(), b));
}
template <class Shape, class Stride, int B, int M, int S, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
max_common_vector(Layout<Shape,Stride> const& a,
ComposedLayout<Swizzle<B,M,S>,Offset,LayoutB> const& b)
{
return max_common_vector(b, a);
}
template <int B0, int M0, int S0, class Offset0, class LayoutB0,
int B1, int M1, int S1, class Offset1, class LayoutB1>
CUTE_HOST_DEVICE constexpr
auto
max_common_vector(ComposedLayout<Swizzle<B0,M0,S0>,Offset0,LayoutB0> const& a,
ComposedLayout<Swizzle<B1,M1,S1>,Offset1,LayoutB1> const& b)
{
auto result = coalesce(composition(a, right_inverse(b)));
if constexpr (is_constant<1, decltype(stride<0>(result.layout_b()))>::value) {
return shape<0>(result);
} else {
return Int<1>{};
}
CUTE_GCC_UNREACHABLE;
}
///////////////////////////////////////////////////////////////////////////////
// ComposedLayout as second argument is often more difficult...
template <class Shape, class Stride,
int B, int M, int S, class Offset, class LayoutT>
CUTE_HOST_DEVICE constexpr
auto
logical_product(Layout<Shape,Stride> const& layout,
ComposedLayout<Swizzle<B,M,S>,Offset,LayoutT> const& tiler)
{
CUTE_STATIC_ASSERT_V(tiler.offset() == Int<0>{}, "Require Swizzle offset == 0.");
// The new layout -- if swizzle wasn't an issue, this is the result
// our goal is to determine a new swizzle for these strides
auto new_layout = logical_product(layout, tiler.layout_b());
// This is accomplished by identifying
// S o L :=: S? o L*
// We identify the "active" portion of S by computing (P o L)(c*) where P is a projection generated by S
// Then that active identifier is transformed through the layouts:
// L*(L[(P o L)(c*)])
// which is a new swizzle identifier for S?, the new swizzle
// Projections of the swizzle layout for composition, P
auto swizzle_only_zy = make_layout(make_shape (Int<(1 << M)>{}, Int<(1 << B)>{}, Int<(1 << (abs(S)-B))>{}, Int<(1 << B )>{}, Int<1>{}),
make_stride( Int<0>{}, Int<(1 << M)>{}, Int<0>{}, Int<(1 << (M+abs(S)))>{}, Int<0>{}));
// Compose with the tiler to get the swizzle projection, P o L [The Z and Y contributing portions of L]
auto layout_only_zy = composition(swizzle_only_zy, tiler.layout_b());
// Transform the end coordinate to get the active bits of the swizzle, (P o L)(c*)
auto swizzle_active_bits = layout_only_zy(size(layout_only_zy)-Int<1>{});
// Get the Z bit and the Y bits
auto active_Z = swizzle_active_bits & typename Swizzle<B,M,S>::zzz_msk{};
auto active_Y = swizzle_active_bits & typename Swizzle<B,M,S>::yyy_msk{};
// Pass the identifiers through the old layout and new layout to make a new swizzle identifier, L*(L[(P o L)(c*)])
auto new_active_Z = new_layout(Int<0>{}, tiler.layout_b()[active_Z]);
auto new_active_Y = new_layout(Int<0>{}, tiler.layout_b()[active_Y]);
// Use this new swizzle identifier to construxt the new swizzle for new_layout
// (this also makes sure it's a "valid" swizzle that Swizzle can represent)
return composition(make_swizzle<new_active_Y,new_active_Z>(), new_layout);
}
} // end namespace cute
|