Spaces:
Sleeping
Sleeping
File size: 25,936 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |

[README](../../README.md#documentation) > **Quick Start**
# Quickstart
## Prerequisites
CUTLASS requires:
- NVIDIA CUDA Toolkit (11.4 or later required, [12.0](https://developer.nvidia.com/cuda-toolkit) recommended)
- CMake 3.18+
- host compiler supporting C++17 or greater (minimum g++ 7.5.0)
- Python 3.6+
CUTLASS may be optionally compiled and linked with
- cuBLAS
- cuDNN v7.6 or later
## Initial build steps
Construct a build directory and run CMake.
```bash
$ export CUDACXX=${CUDA_INSTALL_PATH}/bin/nvcc
$ mkdir build && cd build
$ cmake .. -DCUTLASS_NVCC_ARCHS=90a # compiles for NVIDIA Hopper GPU architecture
```
If your goal is strictly to build only the CUTLASS Profiler and to minimize compilation time, we suggest
executing the following CMake command in an empty `build/` directory.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=90a -DCUTLASS_ENABLE_TESTS=OFF -DCUTLASS_UNITY_BUILD_ENABLED=ON
```
This reduces overall compilation time by excluding unit tests and enabling the unity build.
You may reduce build times by compiling only certain operations by setting the `CUTLASS_LIBRARY_OPERATIONS` flag as shown below,
executed from an empty `build/` directory. This only compiles 2-D convolution kernels.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=90a -DCUTLASS_LIBRARY_OPERATIONS=conv2d
```
You may also filter kernels by name by supplying a filter string with flag `CUTLASS_LIBRARY_KERNELS`. For example the below command selects only CUTLASS-3 kernels.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=90a -DCUTLASS_LIBRARY_KERNELS=cutlass3x*
```
See more examples on selectively compiling CUTLASS GEMM and convolution kernels [here](quickstart.md#example-cmake-commands).
You may explicitly exclude cuBLAS and cuDNN as dependencies with the following CMake flags.
- `-DCUTLASS_ENABLE_CUBLAS=OFF`
- `-DCUTLASS_ENABLE_CUDNN=OFF`
## Build and run the CUTLASS Profiler
From the `build/` directory created above, compile the CUTLASS Profiler.
```bash
$ make cutlass_profiler -j12
```
Then execute the CUTLASS Profiler computing GEMM, execute the following command.
```bash
$ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=4352 --n=4096 --k=4096
=============================
Problem ID: 1
Provider: CUTLASS
Operation: cutlass_simt_sgemm_128x128_nn
Disposition: Passed
Status: Success
Arguments: --m=4352 --n=4096 --k=4096 --A=f32:column --B=f32:column --C=f32:column --alpha=1 --beta=0 \
--split_k_slices=1 --batch_count=1 --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 \
--stages=2 --warps_m=2 --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 \
--max_cc=1024
Bytes: 52428800 bytes
FLOPs: 146064539648 flops
Runtime: 10.5424 ms
Memory: 4.63158 GiB/s
Math: 13854.9 GFLOP/s
```
To execute the CUTLASS Profiler for convolution, run the following example.
```bash
$ ./tools/profiler/cutlass_profiler --kernels=s1688fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --pad_h=1 --pad_w=1
```
To execute all CUTLASS 2-D convolution operators, execute the following.
```bash
$ ./tools/profiler/cutlass_profiler --operation=conv2d --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3
=============================
Problem ID: 1
Provider: CUTLASS
OperationKind: conv2d
Operation: cutlass_simt_sfprop_optimized_128x128_8x2_nhwc
Status: Success
Verification: ON
Disposition: Passed
reference_device: Passed
Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1 \
--stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f32:nhwc --Filter=f32:nhwc --Output=f32:nhwc \
--conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1 \
--eq_gemm_provider=none --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4 \
--warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024
Bytes: 2055798784 bytes
FLOPs: 118482796544 flops
Runtime: 8.13237 ms
Memory: 235.431 GiB/s
Math: 14569.3 GFLOP/s
```
See [documentation for the CUTLASS Profiler](profiler.md) for more details.
## Build and run CUTLASS Unit Tests
From the `build/` directory created above, simply build the target `test_unit` to compile and run
all unit tests.
```bash
$ make test_unit -j
...
...
...
[----------] Global test environment tear-down
[==========] 946 tests from 57 test cases ran. (10812 ms total)
[ PASSED ] 946 tests.
$
```
The exact number of tests run is subject to change as we add more functionality.
No tests should fail. Unit tests automatically construct the appropriate runtime filters
to avoid executing on architectures that do not support all features under test.
The unit tests are arranged hierarchically mirroring the CUTLASS Template Library. This enables
parallelism in building and running tests as well as reducing compilation times when a specific
set of tests are desired.
For example, the following executes strictly the warp-level GEMM tests.
```bash
$ make test_unit_gemm_warp -j
...
...
[----------] 3 tests from SM75_warp_gemm_tensor_op_congruous_f16
[ RUN ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x8_32x128x8_16x8x8
[ OK ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x8_32x128x8_16x8x8 (0 ms)
[ RUN ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_64x64x32_16x8x8
[ OK ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_64x64x32_16x8x8 (2 ms)
[ RUN ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_32x32x32_16x8x8
[ OK ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_32x32x32_16x8x8 (1 ms)
[----------] 3 tests from SM75_warp_gemm_tensor_op_congruous_f16 (3 ms total)
...
...
[----------] Global test environment tear-down
[==========] 104 tests from 32 test cases ran. (294 ms total)
[ PASSED ] 104 tests.
[100%] Built target test_unit_gemm_warp
```
## Building for Multiple Architectures
To minimize compilation time, specific GPU architectures can be enabled via the CMake command,
selected by [CUDA Compute Capability.](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities)
**NVIDIA Ampere Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=90a # compiles for NVIDIA Hopper GPU architecture
```
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 # compiles for NVIDIA Ampere GPU architecture
```
**NVIDIA Turing Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=75 # compiles for NVIDIA Turing GPU architecture
```
**NVIDIA Volta Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=70 # compiles for NVIDIA Volta GPU architecture
```
**NVIDIA Pascal Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="60;61" # compiles for NVIDIA Pascal GPU architecture
```
**NVIDIA Maxwell Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="50;53" # compiles for NVIDIA Maxwell GPU architecture
```
## Using CUTLASS within other applications
Applications should list [`/include`](/include) within their include paths. They must be
compiled as C++17 or greater.
**Example:** print the contents of a variable storing half-precision data.
```c++
#include <iostream>
#include <cutlass/cutlass.h>
#include <cutlass/numeric_types.h>
#include <cutlass/core_io.h>
int main() {
cutlass::half_t x = 2.25_hf;
std::cout << x << std::endl;
return 0;
}
```
## Launching a GEMM kernel in CUDA
**Example:** launch a mixed-precision GEMM targeting Turing Tensor Cores.
_Note, this example uses CUTLASS Utilities. Be sure `tools/util/include` is listed as an include path._
```c++
#include <cutlass/numeric_types.h>
#include <cutlass/gemm/device/gemm.h>
#include <cutlass/util/host_tensor.h>
int main() {
// Define the GEMM operation
using Gemm = cutlass::gemm::device::Gemm<
cutlass::half_t, // ElementA
cutlass::layout::ColumnMajor, // LayoutA
cutlass::half_t, // ElementB
cutlass::layout::ColumnMajor, // LayoutB
cutlass::half_t, // ElementOutput
cutlass::layout::ColumnMajor, // LayoutOutput
float, // ElementAccumulator
cutlass::arch::OpClassTensorOp, // tag indicating Tensor Cores
cutlass::arch::Sm75 // tag indicating target GPU compute architecture
>;
Gemm gemm_op;
cutlass::Status status;
//
// Define the problem size
//
int M = 512;
int N = 256;
int K = 128;
float alpha = 1.25f;
float beta = -1.25f;
//
// Allocate device memory
//
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> A({M, K});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> B({K, N});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> C({M, N});
cutlass::half_t const *ptrA = A.device_data();
cutlass::half_t const *ptrB = B.device_data();
cutlass::half_t const *ptrC = C.device_data();
cutlass::half_t *ptrD = C.device_data();
int lda = A.device_ref().stride(0);
int ldb = B.device_ref().stride(0);
int ldc = C.device_ref().stride(0);
int ldd = C.device_ref().stride(0);
//
// Launch GEMM on the device
//
status = gemm_op({
{M, N, K},
{ptrA, lda}, // TensorRef to A device tensor
{ptrB, ldb}, // TensorRef to B device tensor
{ptrC, ldc}, // TensorRef to C device tensor
{ptrD, ldd}, // TensorRef to D device tensor - may be the same as C
{alpha, beta} // epilogue operation arguments
});
if (status != cutlass::Status::kSuccess) {
return -1;
}
return 0;
}
```
Note, the above could be simplified as follows using helper methods defined in `HostTensor`.
```c++
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> A({M, K});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> B({K, N});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> C({M, N});
//
// Use the TensorRef returned by HostTensor::device_ref().
//
status = gemm_op({
{M, N, K},
A.device_ref(), // TensorRef to A device tensor
B.device_ref(), // TensorRef to B device tensor
C.device_ref(), // TensorRef to C device tensor
C.device_ref(), // TensorRef to D device tensor - may be the same as C
{alpha, beta} // epilogue operation arguments
});
```
## Launching a GEMM kernel using CUTLASS 3.0 or newer
**Example:** launch a mixed-precision GEMM targeting Hopper Tensor Cores.
```c++
#include "cutlass/cutlass.h"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
using namespace cute;
int main(int argc, char const **args) {
// A matrix configuration
using ElementA = cutlass::half_t; // Element type for A matrix operand
using LayoutA = cutlass::layout::RowMajor; // Layout type for A matrix operand
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value; // Memory access granularity/alignment of A matrix in units of elements (up to 16 bytes)
// B matrix configuration
using ElementB = cutlass::half_t; // Element type for B matrix operand
using LayoutB = cutlass::layout::ColumnMajor; // Layout type for B matrix operand
constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value; // Memory access granularity/alignment of B matrix in units of elements (up to 16 bytes)
// C/D matrix configuration
using ElementC = cutlass::half_t; // Element type for C and D matrix operands
using LayoutC = cutlass::layout::ColumnMajor; // Layout type for C and D matrix operands
// Core kernel configurations
using ElementAccumulator = float; // Element type for internal accumulation
using ArchTag = cutlass::arch::Sm90; // Tag indicating the minimum SM that supports the intended feature
using OperatorClass = cutlass::arch::OpClassTensorOp; // Operator class tag
using TilesShape = Shape<_128,_128,_64>; // Threadblock-level tile size
using ClusterShape = Shape<_1,_2,_1>; // Shape of the threadblocks in a cluster
using StageCountType = cutlass::gemm::collective::StageCountAuto; // Stage count maximized based on the tile size
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto; // Kernel to launch based on the default setting in the Collective Builder
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag, OperatorClass,
ElementA, LayoutA, AlignmentA,
ElementB, LayoutB, AlignmentB,
ElementAccumulator,
TilesShape, ClusterShape,
cutlass::gemm::collective::StageCountAuto,
cutlass::gemm::collective::KernelScheduleAuto
>::CollectiveOp;
using CollectiveEpilogue = cutlass::epilogue::collective::DefaultEpilogue<
cutlass::gemm::TagToStrideC_t<LayoutC>,
cutlass::gemm::TagToStrideC_t<LayoutC>,
cutlass::epilogue::thread::LinearCombination<ElementC, 1, ElementAccumulator, ElementAccumulator>>;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int,int,int>, // Indicates ProblemShape
CollectiveMainloop,
CollectiveEpilogue
>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
Gemm gemm_op;
cutlass::Status status;
//
// Define the problem size
//
int M = 512;
int N = 256;
int K = 128;
float alpha = 1.25f;
float beta = -1.25f;
//
// Allocate device memory
//
cutlass::DeviceAllocation<typename Gemm::ElementA> block_A;
cutlass::DeviceAllocation<typename Gemm::ElementB> block_B;
cutlass::DeviceAllocation<typename Gemm::ElementC> block_C;
cutlass::DeviceAllocation<typename Gemm::EpilogueOutputOp::ElementOutput> block_D;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideC = typename Gemm::GemmKernel::StrideC;
using StrideD = typename Gemm::GemmKernel::StrideD;
StrideA stride_A;
StrideB stride_B;
StrideC stride_C;
StrideD stride_D;
stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, Int<1>{}));
stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, Int<1>{}));
stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, Int<1>{}));
stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, Int<1>{}));
block_A.reset(M * K);
block_B.reset(K * N);
block_C.reset(M * N);
block_D.reset(M * N);
//
// Launch GEMM on the device
//
status = gemm_op({
cutlass::gemm::GemmUniversalMode::kGemm,
{M, N, K},
block_A.get(),
stride_A,
block_B.get(),
stride_B,
{block_C.get(), stride_C, block_D.get(), stride_D, {alpha, beta}}
});
if (status != cutlass::Status::kSuccess) {
return -1;
}
return 0;
}
```
# CUTLASS Library
The [CUTLASS Library](/tools/library) defines an API for managing and executing collections of compiled
kernel instances and launching them from host code without template instantiations in client code.
The host-side launch API is designed to be analogous to BLAS implementations for convenience, though its
kernel selection procedure is intended only to be functionally sufficient. It may not launch the
optimal tile size for a given problem. It chooses the first available kernel whose data types,
layouts, and alignment constraints satisfy the given problem. Kernel instances and a data structure
describing them are completely available to client applications which may choose to implement their
own selection logic.
[cuBLAS](https://developer.nvidia.com/cublas) offers the best performance and functional coverage
for dense matrix computations on NVIDIA GPUs.
The CUTLASS Library is used by the CUTLASS Profiler to manage kernel instances, and it is also used
by several SDK examples.
* [10_planar_complex](/examples/10_planar_complex/planar_complex.cu)
* [11_planar_complex_array](/examples/11_planar_complex_array/planar_complex_array.cu)
The CUTLASS Library defines enumerated types describing numeric data types, matrix and tensor
layouts, math operation classes, complex transformations, and more.
Client applications should specify [`tools/library/include`](/tools/library/include) in their
include paths and link against libcutlas_lib.so.
The CUTLASS SDK example [10_planar_complex](/examples/10_planar_complex/CMakeLists.txt) specifies
its dependency on the CUTLASS Library with the following CMake command.
```
target_link_libraries(
10_planar_complex
PRIVATE
cutlass_lib
cutlass_tools_util_includes
)
```
A sample kernel launch from host-side C++ is shown as follows.
```c++
#include "cutlass/library/library.h"
#include "cutlass/library/handle.h"
int main() {
//
// Define the problem size
//
int M = 512;
int N = 256;
int K = 128;
float alpha = 1.25f;
float beta = -1.25f;
//
// Allocate device memory
//
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> A({M, K});
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> B({K, N});
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> C({M, N});
float const *ptrA = A.device_data();
float const *ptrB = B.device_data();
float const *ptrC = C.device_data();
float *ptrD = C.device_data();
int lda = A.device_ref().stride(0);
int ldb = B.device_ref().stride(0);
int ldc = C.device_ref().stride(0);
int ldd = D.device_ref().stride(0);
//
// CUTLASS Library call to execute device GEMM
//
cutlass::library::Handle handle;
//
// Launch GEMM on CUDA device.
//
cutlass::Status status = handle.gemm(
M,
N,
K,
cutlass::library::NumericTypeID::kF32, // data type of internal accumulation
cutlass::library::NumericTypeID::kF32, // data type of alpha/beta scalars
&alpha, // pointer to alpha scalar
cutlass::library::NumericTypeID::kF32, // data type of A matrix
cutlass::library::LayoutTypeID::kColumnMajor, // layout of A matrix
ptrA, // pointer to A matrix in device memory
lda, // leading dimension of A matrix
cutlass::library::NumericTypeID::kF32, // data type of B matrix
cutlass::library::LayoutTypeID::kColumnMajor, // layout of B matrix
ptrB, // pointer to B matrix in device memory
ldb, // leading dimension of B matrix
&beta, // pointer to beta scalar
cutlass::library::NumericTypeID::kF32, // data type of C and D matrix
ptrC, // pointer to C matrix in device memory
ldc, // leading dimension fo C matrix
ptrD, // pointer to D matrix in device memory
ldd // leading dimension of D matrix
);
if (status != cutlass::Status::kSuccess) {
return -1;
}
return 0;
}
```
# Example CMake Commands
To instantiate all operations supporting all tile sizes, data types, and alignment constraints, specify
`-DCUTLASS_LIBRARY_KERNELS=all` when running `cmake`.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS='70;75;80' -DCUTLASS_LIBRARY_KERNELS=all
```
The above command line generates about twenty thousand kernels targeting NVIDIA Ampere, Turing, and Volta architectures.
Compiling thousands of kernels for three different architectures is time-consuming. Additionally, this would also result
in a large binary size and on some platforms linker to fail on building the library.
Enabling the "unity build" instantiates multiple kernel instances in each compilation unit, thereby reducing binary size
and avoiding linker limitations on some platforms.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=all -DCUTLASS_UNITY_BUILD_ENABLED=ON
```
It is advised to only compile CUTLASS kernels for NVIDIA architectures one plans on running. Furthermore, kernels
can be selectively included in the CUTLASS Library by specifying filter strings and wildcard characters when executing CMake.
Several examples are defined below for convenience. They may be combined as a comma-delimited list.
Compling only the kernels desired reduces compilation time.
## GEMM CMake Examples
**Example.** All GEMM kernels targeting NVIDIA Ampere Tensor Cores.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 -DCUTLASS_LIBRARY_KERNELS=tensorop*gemm
```
**Example.** All GEMM kernels targeting NVIDIA Turing Tensor Cores.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=75 -DCUTLASS_LIBRARY_KERNELS=tensorop*gemm
```
**Example.** All GEMM kernels with FP32 accumulation targeting NVIDIA Ampere, Turing, and Volta architectures.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=s*gemm
```
**Example.** All kernels which expect A and B to be column-major or row-major targeting NVIDIA Ampere, Turing, and Volta architectures.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=gemm*nn,gemm*tt
```
**Example.** All planar complex GEMM variants targeting NVIDIA Ampere, Turing, and Volta architectures.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=planar_complex
```
## Convolution CMake Examples
**Example.** All convolution kernels targeting NVIDIA Ampere's 16816 Tensor Core operation
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS='80' -DCUTLASS_LIBRARY_KERNELS=s16816fprop,s16816dgrad,s16816wgrad
```
**Example.** All forward propagation (fprop) convolution kernels targeting CUDA Cores for multiple NVIDIA architectures
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS='50;60;61;70;75;80' -DCUTLASS_LIBRARY_KERNELS=sfprop
```
**Example.** All forward propagation (fprop) convolution kernels with FP32 accumulation and FP16 input targeting NVIDIA Ampere's 16816 Tensor Core operation
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS='80' -DCUTLASS_LIBRARY_KERNELS=s16816fprop_*_f16
```
**Example.** All backward weight gradient (wgrad) convolution kernels with FP32 accumulation, FP16 input, and optimized global memory iterator
targeting NVIDIA Ampere, Turing, and Volta Tensor Core operations
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS='70;75;80' -DCUTLASS_LIBRARY_KERNELS=tensorop*s*wgrad_optimized_f16
```
# Copyright
Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```
|