File size: 12,762 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
![ALT](../images/gemm-hierarchy-with-epilogue-no-labels.png "CUTLASS Code Organization")

[README](../../README.md#documentation) > **CUTLASS Utilities**

Note: This document discusses utilities commonly used with code that targets CUTLASS 2.x.
Although CUTLASS 3.0's primary entry point APIs do not transact in these `cutlass::*` tensor types anymore,
users can still find them convenient for managing allocations with trivial affine layouts.
For more advanced host side tensor management, [`cute::Tensor`](/media/docs/cute/03_tensor.md)s
can be used on either host or device for any memory space and full expressive power of
[`cute::Layout`](/media/docs/cute/01_layout.md)s.

# CUTLASS Utilities

CUTLASS utilities are additional template classes that facilitate recurring tasks. These are
flexible implementations of needed functionality, but they are not expected to be efficient.

Applications should configure their builds to list `/tools/util/include` in their include
paths.

Source code is in [`/tools/util/include/cutlass/util/`](/tools/util/include/cutlass/util).

## Tensor Allocation and I/O

To allocate a tensor with storage in both host and device memory, use `HostTensor` in
[`cutlass/util/host_tensor.h`](/tools/util/include/cutlass/util/host_tensor.h)

```c++

template <typename Element, typename Layout>

class HostTensor;

```

This class is compatible with all CUTLASS numeric data types and layouts.

**Example:** column-major matrix storage of single-precision elements.
```c++

#include <cutlass/layout/matrix.h>

#include <cutlass/util/host_tensor.h>



int main() {

  int rows = 32;

  int columns = 16;



  cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});



  return 0;

}

```

Internal host-side storage may be accessed via the following methods.
```c++

float *host_ptr = tensor.host_data();

cutlass::TensorRef<float, cutlass::layout::ColumnMajor> host_ref = tensor.host_ref();

cutlass::TensorView<float, cutlass::layout::ColumnMajor> host_view = tensor.host_view();

```

Device memory may be accessed similarly.
```c++

float *device_ptr = tensor.device_data();

cutlass::TensorRef<float, cutlass::layout::ColumnMajor> device_ref = tensor.device_ref();

cutlass::TensorView<float, cutlass::layout::ColumnMajor> device_view = tensor.device_view();

```

Printing to human-readable CSV output is accoplished with `std::ostream::operator<<()` defined in
[`cutlass/util/tensor_view_io.h`](/tools/util/include/cutlass/util/tensor_view_io.h). 
Note, this assumes all views refer to host memory.
```c++

#include <cutlass/util/tensor_view_io.h>



int main() {

  // Obtain a TensorView into host memory

  cutlass::TensorView<float, cutlass::layout::ColumnMajor> view = tensor.host_view();



  // Print to std::cout

  std::cout << view << std::endl;



  return 0;

}

```

Host and device memory must be explicitly synchronized by the application.
```c++

float idx = 0;



for (int i = 0; i < rows; ++i) {

  for (int j = 0; j < columns; ++j) {



    // Write the element at location {i, j} in host memory

    tensor.host_ref().at({i, j}) = idx;



    idx += 0.5f;

  } 

}



// Copy host memory to device memory

tensor.sync_device();



// Obtain a device pointer usable in CUDA kernels

float *device_ptr = tensor.device_data();

```

`HostTensor<>` is usable by all CUTLASS layouts including interleaved layouts.
```c++

int rows = 4;

int columns = 3;



cutlass::HostTensor<float, cutlass::layout::ColumnMajorInterleaved<4>> tensor({rows, columns});



for (int i = 0; i < rows; ++i) {

  for (int j = 0; j < columns; ++j) {



    // Write the element at location {i, j} in host memory

    tensor.host_ref().at({i, j}) = float(i) * 1.5f - float(j) * 2.25f;

  } 

}



std::cout << tensor.host_view() << std::endl;

```

## Device Allocations

To strictly allocate memory on the device using the smart pointer pattern to manage allocation and deallocation,
use `cutlass::DeviceAllocation<>`. 

**Example:** allocating an array in device memory.
```c++

#include <cutlass/layout/matrix.h>

#include <cutlass/layout/tensor_view.h>

#include <cutlass/util/device_memory.h>



__global__ void kernel(float *device_ptr) {



}



int main() {



  size_t N = 1024;



  cutlass::DeviceAllocation<float> device_alloc(N);



  // Call a CUDA kernel passing device memory as a pointer argument

  kernel<<< grid, block >>>(alloc.get());



  if (cudaGetLastError() != cudaSuccess) {

    return -1;

  }



  // Device memory is automatically freed when device_alloc goes out of scope



  return 0;

}

```

## Tensor Initialization

CUTLASS defines several utility functions to initialize tensors to uniform, procedural,
or randomly generated elements. These have implementations using strictly host code and
implementations using strictly CUDA device code.

`TensorFill()` for uniform elements throughout a tensor.
```c++

#include <cutlass/layout/matrix.h>

#include <cutlass/util/reference/host/tensor_fill.h>

#include <cutlass/util/reference/device/tensor_fill.h>

#include <cutlass/util/host_tensor.h>



int main() {

  int rows = 128;

  int columns = 64;



  float x = 3.14159f;



  cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});



  // Initialize in host memory

  cutlass::reference::host::TensorFill(tensor.host_view(), x);



  // Initialize in device memory

  cutlass::reference::device::TensorFill(tensor.device_view(), x);



  return 0;

}

```

`TensorFillRandomUniform()` for initializing elements to a random uniform distribution.
The device-side implementation uses CURAND to generate random numbers.
```c++

#include <cutlass/layout/matrix.h>

#include <cutlass/util/reference/host/tensor_fill.h>

#include <cutlass/util/reference/device/tensor_fill.h>

#include <cutlass/util/host_tensor.h>



int main() {

  int rows = 128;

  int columns = 64;



  double maximum = 4;

  double minimum = -4;

  uint64_t seed = 0x2019;



  cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});



  // Initialize in host memory

  cutlass::reference::host::TensorFillRandomUniform(

    tensor.host_view(),

    seed,

    maximum,

    minimum);



  // Initialize in device memory

  cutlass::reference::device::TensorFillRandomUniform(

    tensor.device_view(),

    seed,

    maximum,

    minimum);



  return 0;

}

```


`TensorFillRandomGaussian()` for initializing elements to a random gaussian distribution.
The device-side implementation uses CURAND to generate random numbers.
```c++

#include <cutlass/layout/matrix.h>

#include <cutlass/util/reference/host/tensor_fill.h>

#include <cutlass/util/reference/device/tensor_fill.h>

#include <cutlass/util/host_tensor.h>



int main() {



  int rows = 128;

  int columns = 64;



  double mean = 0.5;

  double stddev = 2.0;

  uint64_t seed = 0x2019;



  cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});



  // Initialize in host memory

  cutlass::reference::host::TensorFillRandomGaussian(

    tensor.host_view(),

    seed,

    mean,

    stddev);



  // Initialize in device memory

  cutlass::reference::device::TensorFillRandomGaussian(

    tensor.device_view(),

    seed,

    mean,

    stddev);



  return 0;

}

```

Each of these functions accepts an additional argument to specify how many bits of
the mantissa less than 1 are non-zero. This simplifies functional comparisons when
exact random distributions are not necessary, since elements may be restricted to
integers or values with exact fixed-point representations.

```c++

#include <cutlass/layout/matrix.h>

#include <cutlass/util/reference/host/tensor_fill.h>

#include <cutlass/util/reference/device/tensor_fill.h>

#include <cutlass/util/host_tensor.h>



int main() {



  int rows = 128;

  int columns = 64;



  double mean = 0.5;

  double stddev = 2.0;

  uint64_t seed = 0x2019;



  int bits_right_of_binary_decimal = 2;



  cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});



  // Initialize in host memory

  cutlass::reference::host::TensorFillRandomGaussian(

    tensor.host_view(),

    seed,

    mean,

    stddev,

    bits_right_of_binary_decimal);



  // Initialize in device memory

  cutlass::reference::device::TensorFillRandomGaussian(

    tensor.device_view(),

    seed,

    mean,

    stddev,

    bits_right_of_binary_decimal);



  return 0;

}

```

These utilities may be used for all data types.

**Example:** random half-precision tensor with Gaussian distribution.
```c++

#include <cutlass/numeric_types.h>

#include <cutlass/layout/matrix.h>

#include <cutlass/util/reference/host/tensor_fill.h>

#include <cutlass/util/reference/device/tensor_fill.h>

#include <cutlass/util/host_tensor.h>



int main() {

  int rows = 128;

  int columns = 64;



  double mean = 0.5;

  double stddev = 2.0;

  uint64_t seed = 0x2019;



  // Allocate a column-major tensor with half-precision elements

  cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> tensor({rows, columns});



  // Initialize in host memory

  cutlass::reference::host::TensorFillRandomGaussian(

    tensor.host_view(),

    seed,

    mean,

    stddev);



  // Initialize in device memory

  cutlass::reference::device::TensorFillRandomGaussian(

    tensor.device_view(),

    seed,

    mean,

    stddev);



  return 0;

}

```

## Reference Implementations

CUTLASS defines reference implementations usable with all data types and layouts. These are
used throughout the unit tests.

**Example:** Reference GEMM implementation with mixed precision internal computation.
```c++

#include <cutlass/numeric_types.h>

#include <cutlass/layout/matrix.h>



#include <cutlass/util/host_tensor.h>

#include <cutlass/util/reference/host/gemm.h>



int main() {



  int M = 64;

  int N = 32;

  int K = 16;



  float alpha = 1.5f;

  float beta = -1.25f;



  cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> A({M, K});

  cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> B({K, N});

  cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> C({M, N});



  cutlass::reference::host::Gemm<

    cutlass::half_t, cutlass::layout::ColumnMajor,   // ElementA and LayoutA

    cutlass::half_t, cutlass::layout::ColumnMajor,   // ElementB and LayoutB

    cutlass::half_t, cutlass::layout::ColumnMajor,   // ElementC and LayoutC

    float,                                           // scalar type (alpha and beta)

    float> gemm_op;                                  // internal accumulation type



  gemm_op(

    {M, N, K},             // problem size

    alpha,                 // alpha scalar

    A.host_view(),         // TensorView to host memory

    B.host_view(),         // TensorView to host memory

    beta,                  // beta scalar

    C.host_view(),         // TensorView to host memory

    D.host_view());        // TensorView to device memory



  return 0;

}

```

# Copyright

Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause

```

  Redistribution and use in source and binary forms, with or without

  modification, are permitted provided that the following conditions are met:



  1. Redistributions of source code must retain the above copyright notice, this

  list of conditions and the following disclaimer.



  2. Redistributions in binary form must reproduce the above copyright notice,

  this list of conditions and the following disclaimer in the documentation

  and/or other materials provided with the distribution.



  3. Neither the name of the copyright holder nor the names of its

  contributors may be used to endorse or promote products derived from

  this software without specific prior written permission.



  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

  SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

```