Spaces:
Sleeping
Sleeping
File size: 20,068 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Utilities for emitting Conv3d kernels
"""
import enum
import logging
import os.path
import shutil
from string import Template
try:
import builtins
if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True:
raise ImportError("Disabling attempt to import cutlass_library")
from cutlass_library.library import *
from cutlass_library.conv3x_emitter import EmitConv3xInstance, EmitConv3xIncludes
except ImportError:
from library import *
from conv3x_emitter import EmitConv3xInstance, EmitConv3xIncludes
_LOGGER = logging.getLogger(__name__)
###################################################################################################
#
class Conv3dOperation:
#
def __init__(self, conv_kind, iterator_algorithm, arch, tile_description, A, B, C, element_epilogue, \
stride_support, epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4):
self.operation_kind = OperationKind.Conv3d
self.arch = arch
self.tile_description = tile_description
self.conv_kind = conv_kind
self.A = A
self.B = B
self.C = C
self.element_epilogue = element_epilogue
self.epilogue_functor = epilogue_functor
self.iterator_algorithm = iterator_algorithm
self.stride_support = stride_support
self.swizzling_functor = swizzling_functor
#
def is_mixed_input(self):
return self.A.element != self.B.element
#
def core_name(self):
''' The basic operation kind is prefixed with a letter indicating the accumulation type. '''
intermediate_type = ''
if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp:
inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape)
if self.tile_description.math_instruction.element_a != self.A.element and \
self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator:
intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a]
else:
inst_shape = ''
return "%s%s%s%s3d_%s" % (ShortDataTypeNames[self.tile_description.math_instruction.element_accumulator], \
inst_shape, intermediate_type, ConvKindNames[self.conv_kind], IteratorAlgorithmNames[self.iterator_algorithm])
#
def extended_name(self):
''' Append data types if they differ from compute type. '''
if self.C.element != self.tile_description.math_instruction.element_accumulator and \
self.A.element != self.tile_description.math_instruction.element_accumulator:
extended_name = "${element_c}_${core_name}_${element_a}"
elif self.C.element == self.tile_description.math_instruction.element_accumulator and \
self.A.element != self.tile_description.math_instruction.element_accumulator:
extended_name = "${core_name}_${element_a}"
else:
extended_name = "${core_name}"
extended_name = SubstituteTemplate(extended_name, {
'element_a': DataTypeNames[self.A.element],
'element_c': DataTypeNames[self.C.element],
'core_name': self.core_name()
})
return extended_name
#
def configuration_name(self):
''' The full procedural name indicates architecture, extended name, tile size, and layout. '''
opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class]
threadblock = "%dx%d_%dx%d" % (
self.tile_description.threadblock_shape[0],
self.tile_description.threadblock_shape[1],
self.tile_description.threadblock_shape[2],
self.tile_description.stages
)
if self.stride_support == StrideSupport.Unity:
configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}_unity_stride"
else:
configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}"
return SubstituteTemplate(
configuration_name,
{
'opcode_class': opcode_class_name,
'extended_name': self.extended_name(),
'threadblock': threadblock,
}
)
#
def procedural_name(self):
''' The full procedural name indicates architecture, extended name, tile size, and layout. '''
return self.configuration_name()
###################################################################################################
#
# Emits single instances of a CUTLASS device-wide operator
#
###################################################################################################
class EmitConv3dInstance:
def __init__(self):
# Emitter for CUTLASS 3 convolution operations
self.conv3x_emitter = EmitConv3xInstance()
self.template = """
// Conv3d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}"
using ${operation_name}_base =
typename cutlass::conv::kernel::DefaultConv3d${conv_kind_name}<
${element_a},
cutlass::layout::TensorNDHWC,
${element_b},
cutlass::layout::TensorNDHWC,
${element_c},
cutlass::layout::TensorNDHWC,
${element_accumulator},
${opcode_class},
${arch},
cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>,
cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >,
cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>,
${epilogue_functor}<
${element_c},
${epilogue_vector_length},
${element_accumulator},
${element_epilogue}
>,
${swizzling_functor}, // cutlass::gemm::threadblock::GemmSplitKIdentityThreadblockSwizzle<>,
${stages},
cutlass::arch::OpMultiplyAdd,
${iterator_algorithm},
${stride_support}
>::Kernel;
"""
def emit(self, operation):
_LOGGER.debug("*** EmitConv3dInstance::emit")
_LOGGER.debug("*** operation: procedural_name()=" + operation.procedural_name())
if hasattr(operation, 'is_3x') and operation.is_3x:
_LOGGER.debug("*** CUTLASS 3 operation")
return self.conv3x_emitter.emit(operation)
_LOGGER.debug("*** CUTLASS 2 operation")
warp_shape = [int(operation.tile_description.threadblock_shape[idx] / operation.tile_description.warp_count[idx]) for idx in range(3)]
epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element])
values = {
'operation_name': operation.procedural_name(),
'conv_kind': ConvKindTag[operation.conv_kind],
'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(),
'element_a': DataTypeTag[operation.A.element],
'layout_a': LayoutTag[operation.A.layout],
'element_b': DataTypeTag[operation.B.element],
'layout_b': LayoutTag[operation.B.layout],
'element_c': DataTypeTag[operation.C.element],
'layout_c': LayoutTag[operation.C.layout],
'element_accumulator': DataTypeTag[operation.tile_description.math_instruction.element_accumulator],
'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class],
'arch': "cutlass::arch::Sm%d" % operation.arch,
'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]),
'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]),
'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]),
'warp_shape_m': str(warp_shape[0]),
'warp_shape_n': str(warp_shape[1]),
'warp_shape_k': str(warp_shape[2]),
'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]),
'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]),
'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]),
'epilogue_vector_length': str(epilogue_vector_length),
'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor],
'element_epilogue': str(DataTypeTag[operation.element_epilogue]),
'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor],
'stages': str(operation.tile_description.stages),
'iterator_algorithm': IteratorAlgorithmTag[operation.iterator_algorithm],
'iterator_algorithm_name': IteratorAlgorithmNames[operation.iterator_algorithm].capitalize(),
'stride_support': StrideSupportTag[operation.stride_support]
}
return SubstituteTemplate(self.template, values)
###################################################################################################
#
# Generator functions for all layouts
#
###################################################################################################
#
def GenerateConv3dTensorOp(manifest, tile_descriptions, min_cc, align = 128):
for tile in tile_descriptions:
for conv_kind in [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad]:
if conv_kind == ConvKind.Fprop or (tile.math_instruction.element_accumulator in [DataType.f16, DataType.f32]):
#
output_types = [tile.math_instruction.element_a, tile.math_instruction.element_accumulator] \
if DataTypeSize[tile.math_instruction.element_accumulator] == 32 \
else [tile.math_instruction.element_accumulator,]
for output_type in output_types:
A = TensorDescription(tile.math_instruction.element_a, LayoutType.TensorNDHWC, int(align / DataTypeSize[tile.math_instruction.element_a]))
B = TensorDescription(tile.math_instruction.element_b, LayoutType.TensorNDHWC, int(align / DataTypeSize[tile.math_instruction.element_b]))
C = TensorDescription(output_type, LayoutType.TensorNDHWC, max(1, int(align / DataTypeSize[output_type])))
manifest.append(Conv3dOperation(conv_kind, min_cc, tile, A, B, C, tile.math_instruction.element_accumulator))
class EmitConv3dIncludes:
'''Emit includes that are specific to the operation.'''
def __init__(self):
self.includes = ['conv3d_operation.h']
self.emitter_3x = EmitConv3xIncludes()
def operation_is_3x(self, operation) -> bool:
"""Whether operation is a CUTLASS 3 convolution (as opposed to CUTLASS 2)"""
return hasattr(operation, 'is_3x') and operation.is_3x
def emit(self, operation) -> str:
if self.operation_is_3x(operation):
return self.emitter_3x.emit(operation)
return '\n'.join(f"#include \"{incl}\"" for incl in self.includes) + \
"\n\n///////////////////////////////////////////////////////////////////////////////////////////////////"
###################################################################################################
#
# Emitters functions for all targets
#
###################################################################################################
class EmitConv3dConfigurationLibrary:
def __init__(self, operation_path, configuration_name):
self.configuration_name = configuration_name
self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name)
self.instance_emitter = EmitConv3dInstance()
self.includes_emitter = EmitConv3dIncludes()
self.header_template = """
/*
Generated by conv3d_operation.py - Do not edit.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "cutlass/cutlass.h"
#include "cutlass/library/library.h"
#include "cutlass/library/manifest.h"
#include "library_internal.h"
"""
self.instance_template = """
${stub_begin}
${operation_instance}
// Derived class
struct ${operation_name} :
public ${operation_name}_base { };
${stub_end}
///////////////////////////////////////////////////////////////////////////////////////////////////
"""
self.configuration_header = """
namespace cutlass {
namespace library {
// Initialize all instances
void initialize_${configuration_name}(Manifest &manifest) {
"""
self.configuration_instance = """${stub_begin}
using Operation_${operation_name} = cutlass::conv::device::${kernel_name}<
${operation_name}>;
manifest.append(new cutlass::library::${operation_wrapper}<
Operation_${operation_name}
>(
"${operation_name}"
));
${stub_end}
"""
self.configuration_epilogue = "}\n"
self.epilogue_template = """
///////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace library
} // namespace cutlass
///////////////////////////////////////////////////////////////////////////////////////////////////
"""
def operation_is_3x(self, operation):
"""Whether operation is a CUTLASS 3 convolution (as opposed to CUTLASS 2)"""
return hasattr(operation, 'is_3x') and operation.is_3x
def __enter__(self):
"""
Open the configuration_file, and write the "header" C++ code to it.
The "header" consists of a comment (that this is generated code,
so it should not be edited), and includes that are common
to both the CUTLASS 2 and the CUTLASS 3 cases.
"""
_LOGGER.debug('*** EmitConv3dConfigurationLibrary::__enter__')
_LOGGER.debug('*** configuration_path (file to write): ' +
str(self.configuration_path))
_LOGGER.debug('*** configuration_name: ' + self.configuration_name)
self.configuration_file = open(self.configuration_path, "w")
self.configuration_file.write(SubstituteTemplate(self.header_template, {
'configuration_name': self.configuration_name
}))
self.operations = []
return self
def emit(self, operation):
"""
Write three pieces of C++ code to the configuration_file
(that was opened by the __enter__ method above):
1. the header includes that are specific to the operation
(CUTLASS 2 vs. CUTLASS 3);
2. the "operation instance" (a "using" declaration ending in "_base"); and
3. the "operation name" (declaration and definition of a derived class
of the above operation instance).
The "using" declaration turns a C++ class name, possibly namespace-qualified,
possibly also with angle brackets, into a C-style, easily demangled identifier.
"""
_LOGGER.debug('*** EmitConv3dConfigurationLibrary::emit')
_LOGGER.debug('*** operation.procedural_name(): ' + operation.procedural_name())
self.operations.append(operation)
self.configuration_file.write(self.includes_emitter.emit(operation))
stub_begin = ''
stub_end = ''
# It can be useful to stub (comment) out instantiations for testing.
# In this case, one need only set is_stub to True.
is_stub = False
if is_stub:
stub_begin = "// STUB for now\n#if 0"
stub_end = '#endif // 0'
self.configuration_file.write(Template(self.instance_template).substitute({
'configuration_name': self.configuration_name,
'operation_name': operation.procedural_name(),
'operation_instance': self.instance_emitter.emit(operation),
'stub_begin': stub_begin,
'stub_end': stub_end
}))
def __exit__(self, exception_type, exception_value, traceback):
"""
Write the rest of the C++ code to the configuration_file, and close the file.
The "rest of the C++ code" has the following components.
1. Configuration header: Open the namespace(s), and open the definition
of the "initialize_${configuration_name}" registration function
that registers the operation with the Manifest.
("Registration" helps turn C++ compile-time polymorphism
(via template parameters) into a run-time choice of parameters.)
2. Configuration instance: In the body of the registration function,
make a "using" declaration Operation_${operation_name} for the
operation type (which uses operation_name as its template argument).
Then, tell the manifest about the operation via a "manifest.append" call.
The argument of the call is a new instance of
"SomethingOperation<Operation_${operation_name}>"
(replace Something with a specific name).
3. Configuration epilogue: Close the definition of the registration function.
4. Epilogue template: Close the namespace(s).
"""
_LOGGER.debug('*** EmitConv3dConfigurationLibrary::__exit__')
_LOGGER.debug('*** configuration_path (file to write): ' +
str(self.configuration_path))
_LOGGER.debug('*** configuration_name: ' + self.configuration_name)
self.configuration_file.write(SubstituteTemplate(self.configuration_header, {
'configuration_name': self.configuration_name
}))
for operation in self.operations:
stub_begin = ''
stub_end = ''
# It can be useful to stub (comment) out instantiations for testing.
# In this case, one need only set is_stub to True.
is_stub = False
if is_stub:
stub_begin = "// STUB for now\n#if 0"
stub_end = "#endif // 0"
kernel_name = 'ImplicitGemmConvolution'
operation_wrapper = 'Conv3dOperation'
if self.operation_is_3x(operation):
kernel_name = 'ConvUniversalAdapter'
operation_wrapper = 'ConvOperation3x'
self.configuration_file.write(SubstituteTemplate(self.configuration_instance, {
'configuration_name': self.configuration_name,
'operation_name': operation.procedural_name(),
'kernel_name': kernel_name,
'operation_wrapper': operation_wrapper,
'stub_begin': stub_begin,
'stub_end': stub_end
}))
self.configuration_file.write(self.configuration_epilogue)
self.configuration_file.write(self.epilogue_template)
self.configuration_file.close()
###################################################################################################
###################################################################################################
|