Spaces:
Sleeping
Sleeping
File size: 10,059 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
#################################################################################################
#
# Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Utilities for emitting CUTLASS >= 3 convolution kernels
"""
import enum
import os.path
import shutil
import logging
from string import Template
try:
import builtins
if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True:
raise ImportError("Disabling attempt to import cutlass_library")
from cutlass_library.library import *
except ImportError:
from library import *
_LOGGER = logging.getLogger(__name__)
###################################################################################################
#
# Emits single instances of a CUTLASS device-wide operator
#
###################################################################################################
class EmitConv3xInstance:
def __init__(self):
_LOGGER.debug("*** EmitConv3xInstance::__init__")
# Define epilogue type first, so that the mainloop type
# can use it with StageCountAutoCarveout.
self.template = """
// CUTLASS >= 3 convolution ${conv_kind_name} kernel instance "${operation_name}"
using ${operation_name}_epilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
${arch},
${opcode_class_epi},
${tile_shape}, // tile shape
${cluster_shape}, // cluster shape
${epi_tile_mn},
${element_accumulator},
${element_compute},
${element_c}, ${layout_c}, 128 / cute::sizeof_bits_v<${element_c}>,
${element_d}, ${layout_d}, 128 / cute::sizeof_bits_v<${element_d}>,
${epilogue_schedule}
// , class FusionOpOrCallbacks = cutlass::epilogue::fusion::LinearCombination<ElementD,ElementCompute>
>::CollectiveOp;
using ${operation_name}_mainloop =
typename cutlass::conv::collective::CollectiveBuilder<
${arch},
${opcode_class_main},
${conv_kind}, // kFprop, kDgrad, or kWgrad
${element_a}, ${layout_a}, 128 / cute::sizeof_bits_v<${element_a}>,
${element_b}, ${layout_b}, 128 / cute::sizeof_bits_v<${element_b}>,
${element_accumulator},
${tile_shape}, // tile shape
${cluster_shape}, // cluster shape
${stages},
${kernel_schedule}
>::CollectiveOp;
// Unit tests call this "ConvKernel".
// Conv operator ${operation_name}
using ${operation_name}_base = cutlass::conv::kernel::ConvUniversal<
${operation_name}_mainloop,
${operation_name}_epilogue,
${tile_scheduler}
>;
"""
def arch_number_to_type(self, arch: int) -> str:
return f"cutlass::arch::Sm{arch}"
def tile_shape(self, operation) -> str:
# For all three kinds of convolutions, the tile shape's K mode
# differs from GEMM in that needs to be wrapped in a Shape.
# For Wgrad convolutions specifically,
# the N tile shape also needs to be wrapped in a Shape.
m_template = 'cute::_${tile_shape_m}'
if operation.conv_kind == ConvKind.Wgrad:
n_template = 'cute::Shape<cute::_${tile_shape_n}>'
else:
n_template = 'cute::_${tile_shape_n}'
k_template = 'cute::Shape<cute::_${tile_shape_k}>'
tile_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>'
values = {
'tile_shape_m': operation.tile_description.tile_shape[0],
'tile_shape_n': operation.tile_description.tile_shape[1],
'tile_shape_k': operation.tile_description.tile_shape[2]
}
return Template(tile_shape_template).substitute(values)
def cluster_shape(self, operation) -> str:
m_template = 'cute::_${cluster_shape_m}'
n_template = 'cute::_${cluster_shape_n}'
k_template = 'cute::_${cluster_shape_k}'
cluster_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>'
values = {
'cluster_shape_m': operation.tile_description.cluster_shape[0],
'cluster_shape_n': operation.tile_description.cluster_shape[1],
'cluster_shape_k': operation.tile_description.cluster_shape[2],
}
return Template(cluster_shape_template).substitute(values)
def stage_count(self, operation) -> str:
# stages == 0 tells builder to pick the number of stages automatically
namespace_prefix = 'cutlass::conv::collective::'
if operation.tile_description.stages > 0:
return f"{namespace_prefix}StageCount<{str(operation.tile_description.stages)}>"
else:
return f"{namespace_prefix}StageCountAutoCarveout<sizeof(typename {operation.procedural_name()}_epilogue::SharedStorage)>"
def emit(self, operation) -> str:
_LOGGER.debug("*** EmitConv3xInstance::emit")
_LOGGER.debug("*** operation: procedural_name()=" + operation.procedural_name())
# Identify the operation as CUTLASS 3 by its is_3x field
if (not hasattr(operation, 'is_3x')) or (not operation.is_3x):
raise RuntimeError("operation must be a CUTLASS 3 operation")
epi_tile_mn = "cutlass::epilogue::collective::EpilogueTileAuto"
opcode_class_main = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class]
opcode_class_epi = opcode_class_main
tile_shape = operation.tile_description.tile_shape
warp_count = operation.tile_description.warp_count
epilogue_schedule = EpilogueScheduleTag[operation.epilogue_schedule]
# KernelScheduleTag and TileSchedulerTag both hard-code the
# namespace qualification of KernelScheduleAuto as
# "cutlass::gemm::collective::" (unless the tag is 'void').
#
# For TileSchedulerTag, this namespace is fine, since CUTLASS 3
# convolutions use the same tile schedulers (from the same
# cutlass::gemm::collective namespace) as GEMMs.
kernel_schedule = KernelScheduleTag[operation.kernel_schedule].replace('gemm::', 'conv::')
tile_scheduler = TileSchedulerTag[operation.tile_scheduler]
opcode_class = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class]
values = {
'operation_name': operation.procedural_name(),
'conv_kind': ConvKindTag[operation.conv_kind],
'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(),
'element_a': DataTypeTag[operation.A.element],
'layout_a': LayoutTag[operation.A.layout],
'align_a': int(operation.A.alignment),
'element_b': DataTypeTag[operation.B.element],
'layout_b': LayoutTag[operation.B.layout],
'align_b': int(operation.B.alignment),
'element_c': DataTypeTag[operation.C.element],
'layout_c': LayoutTag[operation.C.layout],
'align_c': int(operation.C.alignment),
'element_d': DataTypeTag[operation.D.element],
'layout_d': LayoutTag[operation.D.layout],
'align_d': int(operation.D.alignment),
'element_accumulator': DataTypeTag[operation.accumulator_type()],
'opcode_class': opcode_class,
'arch': self.arch_number_to_type(operation.arch),
'tile_shape': self.tile_shape(operation),
'cluster_shape': self.cluster_shape(operation),
'opcode_class_epi': opcode_class_epi,
'opcode_class_main': opcode_class_main,
'epi_tile_mn': epi_tile_mn,
'stages': self.stage_count(operation),
'kernel_schedule': kernel_schedule,
'epilogue_schedule': epilogue_schedule,
'tile_scheduler': tile_scheduler,
'element_compute': DataTypeTag[operation.element_compute]
}
return Template(self.template).substitute(values)
class EmitConv3xIncludes:
def __init__(self):
_LOGGER.debug("*** EmitConv3xIncludes::__init__")
self.includes = ['conv_operation_3x.hpp',
'cutlass/conv/device/conv_universal_adapter.hpp',
'cutlass/conv/kernel/conv_universal.hpp',
'cutlass/conv/collective/collective_builder.hpp',
'cutlass/epilogue/collective/collective_builder.hpp']
def emit(self, operation) -> str:
_LOGGER.debug("*** EmitConv3xIncludes::emit")
return '\n'.join(f"#include \"{incl}\"" for incl in self.includes) + \
"\n\n///////////////////////////////////////////////////////////////////////////////////////////////////"
|