Spaces:
Sleeping
Sleeping
File size: 7,360 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#pragma once
#include "cutlass/gemm/thread/mma.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
namespace test {
namespace gemm {
namespace thread {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Thread-level matrix multiply-accumulate
template <typename Mma>
__global__ void kernel(
typename Mma::ElementC *D,
typename Mma::ElementA const *A,
typename Mma::ElementB const *B,
typename Mma::ElementC const *C) {
auto ptr_D = reinterpret_cast<cutlass::Array<typename Mma::ElementC, Mma::Shape::kMN> *>(D);
auto ptr_A = reinterpret_cast<cutlass::Array<typename Mma::ElementA, Mma::Shape::kMK> const *>(A);
auto ptr_B = reinterpret_cast<cutlass::Array<typename Mma::ElementB, Mma::Shape::kKN> const *>(B);
auto ptr_C = reinterpret_cast<cutlass::Array<typename Mma::ElementC, Mma::Shape::kMN> const *>(C);
Mma mma;
auto a = *ptr_A;
auto b = *ptr_B;
auto c = *ptr_C;
cutlass::Array<typename Mma::ElementC, Mma::Shape::kMN> d;
mma(d, a, b, c);
*ptr_D = d;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product
template <
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape,
/// Data type of A elements
typename ElementA,
/// Layout of A matrix (concept: MatrixLayout)
typename LayoutA,
/// Data type of B elements
typename ElementB,
/// Layout of B matrix (concept: MatrixLayout)
typename LayoutB,
/// Element type of C matrix
typename ElementC,
/// Layout of C matrix (concept: MatrixLayout)
typename LayoutC
>
struct Testbed {
/// Thread-level matrix multiply-accumulate operator
using Mma = cutlass::gemm::thread::Mma<
Shape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC
>;
//
// Data members
//
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
//
// Methods
//
/// Allocates workspace in device memory
Testbed() {
tensor_A.reset(cutlass::make_Coord(Shape::kM, Shape::kK));
tensor_B.reset(cutlass::make_Coord(Shape::kK, Shape::kN));
tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
}
/// Runs the test
bool run() {
//
// initialize device memory
//
cutlass::reference::host::BlockFillSequential(
tensor_A.host_data(),
tensor_A.capacity()
);
cutlass::reference::host::BlockFillSequential(
tensor_B.host_data(),
tensor_B.capacity(),
ElementB(1),
ElementB(2)
);
cutlass::reference::host::TensorFill(
tensor_C.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_computed.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_reference.host_view(),
ElementC(0)
);
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D_computed.sync_device();
// launch kernel
kernel<Mma><<< dim3(1, 1), dim3(1, 1, 1) >>>(
tensor_D_computed.device_data(),
tensor_A.device_data(),
tensor_B.device_data(),
tensor_C.device_data());
// verify no errors
cudaError_t result = cudaDeviceSynchronize();
EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result);
if (result != cudaSuccess) {
return false;
}
tensor_D_computed.sync_host();
//
// Reference implementation
//
//tensor_D_reference.fill(tensor_C.host_view());
cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
ElementC, LayoutC, ElementC, ElementC>
reference_gemm;
reference_gemm(
{Shape::kM, Shape::kN, Shape::kK},
ElementC(1),
tensor_A.host_ref(),
tensor_B.host_ref(),
ElementC(0),
tensor_D_reference.host_ref()
);
//
// Verify equivalence
//
// compare
bool passed = cutlass::reference::host::TensorEquals(
tensor_D_computed.host_view(),
tensor_D_reference.host_view()
);
EXPECT_TRUE(passed)
<< "A:\n" << tensor_A.host_view() << "\n\n"
<< "B:\n" << tensor_B.host_view() << "\n\n"
<< "C:\n" << tensor_C.host_view() << "\n\n"
<< "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
<< "Computed:\n" << tensor_D_computed.host_view() << std::endl;
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace gemm
} // namespace test
|