File size: 38,003 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
/***************************************************************************************************

 * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

 * SPDX-License-Identifier: BSD-3-Clause

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are met:

 *

 * 1. Redistributions of source code must retain the above copyright notice, this

 * list of conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form must reproduce the above copyright notice,

 * this list of conditions and the following disclaimer in the documentation

 * and/or other materials provided with the distribution.

 *

 * 3. Neither the name of the copyright holder nor the names of its

 * contributors may be used to endorse or promote products derived from

 * this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 *

 **************************************************************************************************/

/*! \file

    \brief CUTLASS Library handle.

*/
#include <iostream>
#include <stdexcept>
#include <cstdint>

#include "cutlass/library/handle.h"
#include "cutlass/library/singleton.h"
#include "cutlass/library/util.h"

namespace cutlass {
namespace library {

///////////////////////////////////////////////////////////////////////////////////////////////////

/// Constructor
Handle::Handle(
  cudaStream_t stream,

  size_t workspace_size

):

  provider_(Provider::kCUTLASS),
  stream_(stream),

  workspace_(nullptr),
  workspace_size_(0),
  scalar_pointer_mode_(ScalarPointerMode::kHost),

  last_operation_(nullptr) {



  int device_idx = -1;

  cudaError_t error = cudaGetDevice(&device_idx);
  if (error != cudaSuccess) {
    throw std::runtime_error("cudaGetDevice() failed");

  }


  error = cudaGetDeviceProperties(&device_, device_idx);
  if (error != cudaSuccess) {
    throw std::runtime_error("cudaGetDeviceProperties() failed");

  }


  set_workspace_size(workspace_size);



  Singleton::get();

}



/// Destructor

Handle::~Handle() {

  if (workspace_) {

    if (workspace_) {

      cudaFree(workspace_);

    }


    workspace_ = nullptr;

    workspace_size_ = 0;

  }

}


/// Move constructor
Handle::Handle(Handle && handle) {
  device_ = handle.device_;

  workspace_size_ = handle.workspace_size_;
  workspace_ = handle.workspace_;

  stream_ = handle.stream_;

  scalar_pointer_mode_ = handle.scalar_pointer_mode_;



  handle.workspace_ = nullptr;
  handle.workspace_size_ = 0;
}

/// Move assignment operator
Handle & Handle::operator=(Handle && handle) {

  provider_ = handle.provider_;

  device_ = handle.device_;

  workspace_size_ = handle.workspace_size_;
  workspace_ = handle.workspace_;

  stream_ = handle.stream_;

  scalar_pointer_mode_ = handle.scalar_pointer_mode_;



  handle.workspace_ = nullptr;
  handle.workspace_size_ = 0;

  return *this;

}



int Handle::compute_capability() const {

  return device_.major * 10 + device_.minor;

}



/// Sets the current CUDA stream

void Handle::set_stream(cudaStream_t stream) {

  stream_ = stream;
}

/// Gets the current CUDA stream
cudaStream_t Handle::get_stream() const {
  return stream_;

}



/// Gets the current provider

Provider Handle::get_provider() const {
  return provider_;

}



/// Sets the provider of operations

void Handle::set_provider(Provider provider) {
  provider_ = provider;
}

/// Gets the device workspace size
size_t Handle::get_workspace_size() const {

  return workspace_size_;

}



/// Gets a pointer to the device workspace allocation in Global Memory

void *Handle::get_workspace() const {
  return workspace_;

}



/// Sets the size of device workspace, invalidating previous calls to get_device_workspace()

void Handle::set_workspace_size(size_t bytes) {
  if (bytes != workspace_size_) {

    if (workspace_) {

      cudaFree(workspace_);

    }


    workspace_ = nullptr;

    workspace_size_ = bytes;


    if (workspace_size_) {


      cudaError_t error = cudaMalloc((void **)&workspace_, workspace_size_);


      if (error != cudaSuccess) {

        throw std::runtime_error("Failed to allocate workspace");

      }

    }

  }


  if (workspace_) {

    cudaError_t error = cudaMemset(workspace_, 0, workspace_size_);



    if (error != cudaSuccess) {

      throw std::runtime_error("Failed to clear workspace");
    }

  }

}


/// Gets the scalar pointer mode
ScalarPointerMode Handle::get_scalar_pointer_mode() const {

  return scalar_pointer_mode_;
}

/// Sets the scalar pointer mode
void Handle::set_scalar_pointer_mode(ScalarPointerMode mode) {

  scalar_pointer_mode_ = mode;
}

/// Gets the last operation
Operation const *Handle::get_last_operation() const {

  return last_operation_;

}



///////////////////////////////////////////////////////////////////////////////////////////////////



/// Returns the maximum required alignment for each operator

static int maximum_alignment_requirement(GemmDescription const &desc) {

  return std::max(

    std::max(desc.A.alignment, desc.B.alignment), desc.C.alignment);

}



/// Returns the largest alignment (in units of elements) the problem satisfies, starting from a

/// given upper limit.

static int gemm_problem_alignment(

  int M,

  int N,

  int K,

  NumericTypeID element_A,

  void const *ptr_A,

  int64_t lda,
  int64_t batch_stride_A,

  NumericTypeID element_B,
  void const *ptr_B,

  int64_t ldb,

  int64_t batch_stride_B,

  NumericTypeID element_C,

  void const * ptr_C,

  int64_t ldc,
  int64_t batch_stride_C,

  void const * ptr_D,
  int64_t ldd,

  int64_t batch_stride_D,
  int max_alignment_in_bytes = 16

) {



  void const *pointers[] = {

    ptr_A, ptr_B, ptr_C, ptr_D

  };



  int64_t extents[] = {
    M, N, K, lda, ldb, ldc, ldd, batch_stride_A, batch_stride_B, batch_stride_C, batch_stride_D

  };


  NumericTypeID elements[] = {
    element_A, element_B, element_C

  };


  for (; max_alignment_in_bytes > 0; max_alignment_in_bytes /= 2) {

    bool satisfied = true;


    // Can pointers satisfy this?

    for (void const *ptr : pointers) {

      std::uintptr_t int_ptr = reinterpret_cast<std::uintptr_t>(ptr);


      if (int_ptr % max_alignment_in_bytes) {

        satisfied = false;

        break;

      }

    }


    if (!satisfied) {

      continue;

    }


    // Compute the maximum alignment based on element data types

    int max_element_alignment = 0;


    for (NumericTypeID type_id : elements) {

      int element_alignment = max_alignment_in_bytes * 8 / library::sizeof_bits(type_id);

      max_element_alignment = std::max(max_element_alignment, element_alignment);

    }


    // Can the problem size and leading dimensions satisfy this?

    for (int64_t extent : extents) {

      if (extent % max_element_alignment) {

        satisfied = false;

        break;

      }

    }


    if (!satisfied) {

      continue;

    }


    // Yes

    return max_element_alignment;

  }


  // No alignment satisfies this problem
  return 0;
}

/// Find the best kernel in descending order of preference.
static Operation const * find_gemm_operation(
  GemmOperationFunctionalMap::const_iterator operators_it,
  GemmPreferenceKey const preference_key) {



  auto cc_it = operators_it->second.upper_bound(preference_key);



  if (cc_it == operators_it->second.begin()) {

    return nullptr;

  }



  Operation const *operation = nullptr;



  // Search in descending order of compute capability

  do {

    --cc_it;

    // Search tile sizes in order, for now.

    for (auto const * op : cc_it->second) {


      GemmDescription const &desc = static_cast<GemmDescription const &>(op->description());


      int min_cc = desc.tile_description.minimum_compute_capability;

      int max_cc = desc.tile_description.maximum_compute_capability;


      int op_alignment = maximum_alignment_requirement(desc);


      if ((min_cc <= preference_key.compute_capability) &&

        (preference_key.compute_capability <= max_cc) &&

        (op_alignment <= preference_key.alignment)) {


        operation = op;

        break;

      }

    }

  } while (!operation && cc_it != operators_it->second.begin());


  return operation;
}

///////////////////////////////////////////////////////////////////////////////////////////////////

/// Executes a GEMM computation: D <= alpha * A*B + beta * C
Status Handle::gemm(

  int M,                                    /// GEMM M dimension
  int N,                                    /// GEMM N dimension
  int K,                                    /// GEMM K dimension

  NumericTypeID element_compute,            /// Data type of internal accumulation



  NumericTypeID element_scalar,             /// Data type of alpha/beta scalars

  void const *alpha,                        /// Pointer to alpha scalar



  NumericTypeID element_A,                  /// Data type of A matrix elements

  LayoutTypeID layout_A,                    /// Layout of A matrix

  ComplexTransform transform_A,             /// Complex transformation applied to A matrix - ignored for real-valued matrices



  void const * ptr_A,                       /// Pointer to A matrix in Global Memory

  int64_t lda,                              /// Leading dimension of A matrix

  NumericTypeID element_B,                  /// Data type of B matrix elements

  LayoutTypeID layout_B,                    /// Layout of B matrix
  ComplexTransform transform_B,             /// Complex transformation applied to B matrix - ignored for real-valued matrices



  void const * ptr_B,                       /// Pointer to B matrix in Global Memory
  int64_t ldb,                              /// Leading dimension of B matrix



  void const * beta,                        /// Pointer to beta scalar



  NumericTypeID element_C,                  /// Data type of C and D matrices

  void const * ptr_C,                       /// Pointer to C matrix

  int64_t ldc,                              /// Leading dimension of C matrix

  void * ptr_D,                             /// Pointer to D matrix

  int64_t ldd                               /// Leading dimension of D matrix
) {

  //
  // Find the operation
  //

  GemmFunctionalKey key(
    provider_,

    GemmKind::kGemm,

    element_compute,

    element_scalar,

    element_A,

    layout_A,

    transform_A,

    element_B,

    layout_B,

    transform_B,

    element_C,  // C/D are same type and col major default

    LayoutTypeID::kColumnMajor,

    element_C,

    LayoutTypeID::kColumnMajor

  );


  auto operators_it = Singleton::get().operation_table.gemm_operations.find(key);



  if (operators_it == Singleton::get().operation_table.gemm_operations.end()) {
    return cutlass::Status::kErrorNotSupported;

  }


  if (operators_it->second.empty()) {

    return cutlass::Status::kErrorNotSupported;

  }



  //

  // Compute the largest alignment restriction the kernel can satisfy.

  //



  // Maximum alignment expectation among all kernels (in units of bytes)

  int const kMaximumAlignmentSize = 16;



  int alignment = gemm_problem_alignment(

    M, N, K,

    element_A, ptr_A, lda, 0,

    element_B, ptr_B, ldb, 0,

    element_C, ptr_C, ldc, 0,

    ptr_D, ldd, 0, kMaximumAlignmentSize
  );

  //
  // Find the best kernel in descending order of preference.
  //

  GemmPreferenceKey preference_key(compute_capability(), alignment);

  Operation const *operation = find_gemm_operation(operators_it, preference_key);



  if (!operation) {

    return cutlass::Status::kErrorNotSupported;

  }



  last_operation_ = operation;



  //

  // Configure operation

  //



  GemmConfiguration configuration{

    {M, N, K},

    lda,

    ldb,

    ldc,

    ldd,

    1

  };



  // Query host work space size

  uint64_t host_workspace_size_needed = operation->get_host_workspace_size(&configuration);



  if (uint64_t(kHostWorkspaceSize) < host_workspace_size_needed) {

    return cutlass::Status::kErrorNotSupported;

  }



  char host_workspace[kHostWorkspaceSize];



  // Query device workspace size

  uint64_t device_workspace_size_needed = operation->get_device_workspace_size(&configuration);



  if (uint64_t(workspace_size_) < device_workspace_size_needed) {

    return cutlass::Status::kErrorNotSupported;

  }



  // Initialize host and device workspaces

  Status status = operation->initialize(

    &configuration,

    host_workspace,

    workspace_,

    stream_);



  if (status != cutlass::Status::kSuccess) {

    return status;

  }



  // Run the operator

  GemmArguments arguments{

    ptr_A,

    ptr_B,

    ptr_C,

    ptr_D,

    alpha,

    beta,

    scalar_pointer_mode_

  };



  return operation->run(&arguments, host_workspace, workspace_, stream_);

}



///////////////////////////////////////////////////////////////////////////////////////////////////



/// Executes a GEMM computation: D <= alpha * A*B + beta * C.
//
// Supports batched-strided, batched array or split-K serial or split-K parallel.
//
Status Handle::gemm_universal(



  GemmUniversalMode mode,                   /// indicates the mode in which the kUniversal GEMM is launched



  int M,                                    /// GEMM M dimension

  int N,                                    /// GEMM N dimension

  int K,                                    /// GEMM K dimension

  NumericTypeID element_compute,            /// Data type of internal accumulation

  NumericTypeID element_scalar,             /// Data type of alpha/beta scalars



  void const *alpha,                        /// Pointer to alpha scalar



  NumericTypeID element_A,                  /// Data type of A matrix elements
  LayoutTypeID layout_A,                    /// Layout of A matrix

  ComplexTransform transform_A,             /// Complex transformation applied to A matrix - ignored for real-valued matrices
  void const * ptr_A,                       /// Pointer to A matrix in Global Memory

  int64_t lda,                              /// Leading dimension of A matrix

  NumericTypeID element_B,                  /// Data type of B matrix elements

  LayoutTypeID layout_B,                    /// Layout of B matrix
  ComplexTransform transform_B,             /// Complex transformation applied to B matrix - ignored for real-valued matrices

  void const * ptr_B,                       /// Pointer to B matrix in Global Memory
  int64_t ldb,                              /// Leading dimension of B matrix



  void const * beta,                        /// Pointer to beta scalar



  NumericTypeID element_C,                  /// Data type of C matrix
  LayoutTypeID layout_C,                    /// Layout of D matrix

  void const * ptr_C,                       /// Pointer to C matrix
  int64_t ldc,                              /// Leading dimension of C matrix



  NumericTypeID element_D,                  /// Data type of D matrix
  LayoutTypeID layout_D,                    /// Layout of D matrix

  void * ptr_D,                             /// Pointer to D matrix
  int64_t ldd,                              /// Leading dimension of D matrix



  int batch_count,                          /// Batch count or number of split-K slices

  int64_t batch_stride_A,                   /// Batch stride of A operand

  int64_t batch_stride_B,                   /// Batch stride of B operand
  int64_t batch_stride_C,                   /// Batch stride of C operand

  int64_t batch_stride_D                    /// Batch stride of D operand
) {

  //
  // Find the operation
  //

  GemmFunctionalKey key(
    provider_,

    GemmKind::kUniversal,

    element_compute,

    element_scalar,

    element_A,

    layout_A,

    transform_A,

    element_B,

    layout_B,

    transform_B,

    element_C,

    layout_C,

    element_D,

    layout_D

  );


  auto operators_it = Singleton::get().operation_table.gemm_operations.find(key);



  if (operators_it == Singleton::get().operation_table.gemm_operations.end()) {
    return cutlass::Status::kErrorNotSupported;

  }


  if (operators_it->second.empty()) {

    return cutlass::Status::kErrorNotSupported;

  }



  //

  // Compute the largest alignment restriction the kernel can satisfy.

  //



  // Maximum alignment expectation among all kernels (in units of bytes)

  int const kMaximumAlignmentSize = 16;



  void const *ptr_A_check = ptr_A;
  void const *ptr_B_check = ptr_B;

  void const *ptr_C_check = ptr_C;

  void *      ptr_D_check = ptr_D;

  // Ignore alignment of pointers to pointers. We can't check this from the host,
  // as each batch index has its own pointer in device memory.
  if (mode == GemmUniversalMode::kArray) {
    ptr_A_check = nullptr;

    ptr_B_check = nullptr;

    ptr_C_check = nullptr;

    ptr_D_check = nullptr;

  }


  int alignment = gemm_problem_alignment(
    M, N, K,

    element_A, ptr_A_check, lda, 0,

    element_B, ptr_B_check, ldb, 0,

    element_C, ptr_C_check, ldc, 0,

    ptr_D_check, ldd, 0, kMaximumAlignmentSize

  );


  //
  // Find the best kernel in descending order of preference.
  //

  GemmPreferenceKey preference_key(compute_capability(), alignment);

  Operation const *operation = find_gemm_operation(operators_it, preference_key);



  if (!operation) {

    return cutlass::Status::kErrorNotSupported;

  }



  last_operation_ = operation;



  //

  // Configure operation

  //



  GemmUniversalConfiguration configuration{

    mode,

    {M, N, K},

    batch_count,

    lda,

    ldb,

    ldc,

    ldd

  };



  // Query host work space size

  uint64_t host_workspace_size_needed = operation->get_host_workspace_size(&configuration);



  if (uint64_t(kHostWorkspaceSize) < host_workspace_size_needed) {

    return cutlass::Status::kErrorNotSupported;

  }



  char host_workspace[kHostWorkspaceSize];



  GemmUniversalArguments arguments{

    {M, N, K},

    batch_count,

    ptr_A,

    ptr_B,

    ptr_C,

    ptr_D,

    alpha,

    beta,

    scalar_pointer_mode_,

    lda,

    ldb,

    ldc,

    ldd,

    batch_stride_A,

    batch_stride_B,

    batch_stride_C,

    batch_stride_D

  };



  // Query device workspace size

  uint64_t device_workspace_size_needed = operation->get_device_workspace_size(&configuration, &arguments);



  if (uint64_t(workspace_size_) < device_workspace_size_needed) {

    return cutlass::Status::kErrorNotSupported;

  }



  // Initialize host and device workspaces

  Status status = operation->initialize(

    &configuration,

    host_workspace,

    workspace_,

    stream_);



  if (status != cutlass::Status::kSuccess) {

    return status;

  }



  // Run the operator



  return operation->run(&arguments, host_workspace, workspace_, stream_);

}



///////////////////////////////////////////////////////////////////////////////////////////////////



/// Planar complex GEMM

Status Handle::gemm_planar_complex(



  int M,                                    /// GEMM M dimension

  int N,                                    /// GEMM N dimension

  int K,                                    /// GEMM K dimension



  NumericTypeID element_compute,            /// Data type of internal accumulation



  NumericTypeID element_scalar,             /// Data type of alpha/beta scalars



  void const *alpha,                        /// Pointer to alpha scalar

  NumericTypeID element_A,                  /// Data type of A matrix elements

  LayoutTypeID layout_A,                    /// Layout of A matrix
  ComplexTransform transform_A,             /// Complex transformation applied to A matrix



  void const * ptr_A_real,                  /// Pointer to real part of A matrix

  void const * ptr_A_imag,                  /// Pointer to imaginary part of A matrix

  int64_t lda_real,                         /// Leading dimension of real part of A matrix

  int64_t lda_imag,                         /// Leading dimension of imaginary part of A matrix



  NumericTypeID element_B,                  /// Data type of B matrix elements
  LayoutTypeID layout_B,                    /// Layout of B matrix

  ComplexTransform transform_B,             /// Complex transformation applied to B matrix

  void const * ptr_B_real,                  /// Pointer to real part of B matrix
  void const * ptr_B_imag,                  /// Pointer to imaginary part of B matrix
  int64_t ldb_real,                             /// Leading dimension of real part of B matrix
  int64_t ldb_imag,                             /// Leading dimension of imaginary part of B matrix

  void const * beta,                        /// Pointer to beta scalar

  NumericTypeID element_C,                  /// Data type of C and D matrix



  void const * ptr_C_real,                  /// Pointer to real part of C matrix

  void const * ptr_C_imag,                  /// Pointer to imaginary part of C matrix

  int64_t ldc_real,                             /// Leading dimension of real part of C matrix

  int64_t ldc_imag,                             /// Leading dimension of imaginary part of C matrix



  void * ptr_D_real,                        /// Pointer to real part of D matrix

  void * ptr_D_imag,                        /// Pointer to imaginary part of D matrix

  int64_t ldd_real,                             /// Leading dimension of real part of D matrix

  int64_t ldd_imag,                             /// Leading dimension of imaginary part of D matrix



  int batch_count,                          /// Number of batched GEMMs to execute

  int64_t batch_stride_A_real,
  int64_t batch_stride_A_imag,

  int64_t batch_stride_B_real,
  int64_t batch_stride_B_imag,

  int64_t batch_stride_C_real,
  int64_t batch_stride_C_imag,

  int64_t batch_stride_D_real,
  int64_t batch_stride_D_imag
) {

  //
  // Find the operation
  //

  GemmFunctionalKey key(
    provider_,

    GemmKind::kPlanarComplex,

    element_compute,

    element_scalar,

    element_A,

    layout_A,

    transform_A,

    element_B,

    layout_B,

    transform_B,

    element_C,  // C/D are same type

    LayoutTypeID::kColumnMajor,

    element_C,

    LayoutTypeID::kColumnMajor

  );


  auto operators_it = Singleton::get().operation_table.gemm_operations.find(key);



  if (operators_it == Singleton::get().operation_table.gemm_operations.end()) {
    return cutlass::Status::kErrorNotSupported;

  }


  if (operators_it->second.empty()) {

    return cutlass::Status::kErrorNotSupported;

  }



  //

  // Compute the largest alignment restriction the kernel can satisfy.

  //



  // Maximum alignment expectation among all kernels (in units of bytes)

  int const kMaximumAlignmentSize = 16;



  int alignment = std::max(

    gemm_problem_alignment(

      M, N, K,

      element_A, ptr_A_real, lda_real, batch_stride_A_real,
      element_B, ptr_B_real, ldb_real, batch_stride_B_real,

      element_C, ptr_C_real, ldc_real, batch_stride_C_real,

      ptr_D_real, ldd_real, batch_stride_D_real, kMaximumAlignmentSize

    ),

    gemm_problem_alignment(

      M, N, K,

      element_A, ptr_A_imag, lda_imag, batch_stride_A_imag,

      element_B, ptr_B_imag, ldb_imag, batch_stride_B_imag,

      element_C, ptr_C_imag, ldc_imag, batch_stride_C_imag,

      ptr_D_imag, ldd_imag, batch_stride_D_imag, kMaximumAlignmentSize

    )

  );


  //
  // Find the best kernel in descending order of preference.
  //

  GemmPreferenceKey preference_key(compute_capability(), alignment);

  Operation const *operation = find_gemm_operation(operators_it, preference_key);



  if (!operation) {

    return cutlass::Status::kErrorNotSupported;

  }



  last_operation_ = operation;



  //

  // Configure operation

  //



  GemmPlanarComplexConfiguration configuration{

    GemmUniversalMode::kBatched,

    {M, N, K},

    batch_count,

    lda_real,

    lda_imag,

    ldb_real,

    ldb_imag,

    ldc_real,

    ldc_imag,

    ldd_real,

    ldd_imag

  };



  // Query host work space size

  uint64_t host_workspace_size_needed = operation->get_host_workspace_size(&configuration);



  if (uint64_t(kHostWorkspaceSize) < host_workspace_size_needed) {

    return cutlass::Status::kErrorNotSupported;

  }



  char host_workspace[kHostWorkspaceSize];



  // Query device workspace size

  uint64_t device_workspace_size_needed = operation->get_device_workspace_size(&configuration);



  if (uint64_t(workspace_size_) < device_workspace_size_needed) {

    return cutlass::Status::kErrorNotSupported;

  }



  // Initialize host and device workspaces

  Status status = operation->initialize(

    &configuration,

    host_workspace,

    workspace_,

    stream_);



  if (status != cutlass::Status::kSuccess) {

    return status;

  }



  // Run the operator

  GemmPlanarComplexArguments arguments{

    ptr_A_real,

    ptr_A_imag,

    ptr_B_real,

    ptr_B_imag,

    ptr_C_real,

    ptr_C_imag,

    ptr_D_real,

    ptr_D_imag,

    alpha,

    beta,

    scalar_pointer_mode_,

    batch_stride_A_real,

    batch_stride_A_imag,

    batch_stride_B_real,

    batch_stride_B_imag,

    batch_stride_C_real,

    batch_stride_C_imag,

    batch_stride_D_real,

    batch_stride_D_imag

  };



  return operation->run(&arguments, host_workspace, workspace_, stream_);

}



/////////////////////////////////////////////////////////////////////////////////////////////////



/// Planar complex batched GEMM loading pointers from arrays in global memory

Status Handle::gemm_planar_complex_array(



  int expected_M,                           /// Expected GEMM M dimension (used for sizing CUDA grid)

  int expected_N,                           /// Expected GEMM N dimension (used for sizing CUDA grid)

  int expected_K,                           /// Expected GEMM K dimension

  int batch_count,                          /// Number of independent GEMM computations to execute



  int const *M,                             /// Array containing the GEMM M dimension for each batch index
  int const *N,                             /// Array containing the GEMM N dimension for each batch index

  int const *K,                             /// Array containing the GEMM K dimension for each batch index

  NumericTypeID element_compute,            /// Data type of internal accumulation



  NumericTypeID element_scalar,             /// Data type of alpha/beta scalars

  void const *alpha,                        /// Pointer to alpha scalar



  NumericTypeID element_A,                  /// Data type of A matrix elements

  LayoutTypeID layout_A,                    /// Layout of A matrix

  ComplexTransform transform_A,             /// Complex transformation applied to A matrix



  void const * const * ptr_A_real,          /// Pointer to array containing pointers to real part of A matrices
  void const * const * ptr_A_imag,          /// Pointer to array containing pointers to imaginary part of A matrices

  int64_t lda_real,                             /// Leading dimension of real part of A matrix
  int64_t lda_imag,                             /// Leading dimension of imaginary part of A matrix

  NumericTypeID element_B,                  /// Data type of B matrix elements

  LayoutTypeID layout_B,                    /// Layout of B matrix
  ComplexTransform transform_B,             /// Complex transformation applied to B matrix



  void const * const * ptr_B_real,          /// Pointer to array containing pointers to real part of B matrices

  void const * const * ptr_B_imag,          /// Pointer to array containing pointers to imaginary part of B matrices



  int64_t ldb_real,                             /// Leading dimension of real part of B matrix

  int64_t ldb_imag,                             /// Leading dimension of imaginary part of B matrix



  void const * beta,                        /// Pointer to beta scalar



  NumericTypeID element_C,                  /// Data type of C and D matrix

  void const * const * ptr_C_real,          /// Pointer to array containing pointers to real part of C matrices
  void const * const * ptr_C_imag,          /// Pointer to array containing pointers to imaginary part of C matrices

  int64_t ldc_real,                             /// Leading dimension of real part of C matrix
  int64_t ldc_imag,                             /// Leading dimension of imaginary part of C matrix

  void * const * ptr_D_real,                /// Pointer to array containing pointers to real part of D matrices
  void * const * ptr_D_imag,                /// Pointer to array containing pointers to imaginary part of D matrices

  int64_t ldd_real,                             /// Leading dimension of real part of D matrix
  int64_t ldd_imag                              /// Leading dimension of imaginary part of D matrix
) {

  //
  // Find the operation
  //

  GemmFunctionalKey key(
    provider_,

    GemmKind::kPlanarComplexArray,

    element_compute,

    element_scalar,

    element_A,

    layout_A,

    transform_A,

    element_B,

    layout_B,

    transform_B,

    element_C,  // C/D are same type

    LayoutTypeID::kColumnMajor,

    element_C,

    LayoutTypeID::kColumnMajor

  );


  auto operators_it = Singleton::get().operation_table.gemm_operations.find(key);



  if (operators_it == Singleton::get().operation_table.gemm_operations.end()) {
    return cutlass::Status::kErrorNotSupported;

  }


  if (operators_it->second.empty()) {

    return cutlass::Status::kErrorNotSupported;

  }



  //

  // Compute the largest alignment restriction the kernel can satisfy.

  //



  // Maximum alignment expectation among all kernels (in units of bytes)

  int const kMaximumAlignmentSize = 16;



  int alignment = std::max(

    gemm_problem_alignment(

      expected_M, expected_N, expected_K,
      element_A, nullptr, lda_real, 0,

      element_B, nullptr, ldb_real, 0,

      element_C, nullptr, ldc_real, 0,

      nullptr, ldd_real, 0, kMaximumAlignmentSize

    ),

    gemm_problem_alignment(

      expected_M, expected_N, expected_K,

      element_A, nullptr, lda_imag, 0,

      element_B, nullptr, ldb_imag, 0,

      element_C, nullptr, ldc_imag, 0,

      nullptr, ldd_imag, 0, kMaximumAlignmentSize

    )

  );


  //
  // Find the best kernel in descending order of preference.
  //

  GemmPreferenceKey preference_key(compute_capability(), alignment);

  Operation const *operation = find_gemm_operation(operators_it, preference_key);



  if (!operation) {

    return cutlass::Status::kErrorNotSupported;

  }



  last_operation_ = operation;



  //

  // Configure operation

  //



  GemmPlanarComplexArrayConfiguration configuration{

    {expected_M, expected_N, expected_K},

    batch_count,

    lda_real,

    lda_imag,

    ldb_real,

    ldb_imag,

    ldc_real,

    ldc_imag,

    ldd_real,

    ldd_imag

  };



  // Query host work space size

  uint64_t host_workspace_size_needed = operation->get_host_workspace_size(&configuration);



  if (uint64_t(kHostWorkspaceSize) < host_workspace_size_needed) {

    return cutlass::Status::kErrorNotSupported;

  }



  char host_workspace[kHostWorkspaceSize];



  // Query device workspace size

  uint64_t device_workspace_size_needed = operation->get_device_workspace_size(&configuration);



  if (uint64_t(workspace_size_) < device_workspace_size_needed) {

    return cutlass::Status::kErrorNotSupported;

  }



  // Initialize host and device workspaces

  Status status = operation->initialize(

    &configuration,

    host_workspace,

    workspace_,

    stream_);



  if (status != cutlass::Status::kSuccess) {

    return status;

  }



  // Run the operator

  GemmPlanarComplexArrayArguments arguments{

    M, N, K,

    ptr_A_real,

    ptr_A_imag,

    ptr_B_real,

    ptr_B_imag,

    ptr_C_real,

    ptr_C_imag,

    ptr_D_real,

    ptr_D_imag,

    alpha,

    beta,

    scalar_pointer_mode_

  };



  return operation->run(&arguments, host_workspace, workspace_, stream_);

}



/////////////////////////////////////////////////////////////////////////////////////////////////



/// Finds conv operation instances with Conv::ElementC = Reduction::ElementWorkspace

Operation const* find_conv_operation_for_parallel_reduction(Operation const *operation) {



  ConvDescription const &conv_desc =
    static_cast<ConvDescription const &>(operation->description());


  // if the curren conv operation accumulator and output data type match return operation
  if(conv_desc.tile_description.math_instruction.element_accumulator == conv_desc.C.element) {

    return operation;

  }



  // find conv operation to match conv output and reduction workspace data type

  ConvFunctionalKey key(

    library::Provider::kCUTLASS,

    conv_desc.conv_kind,

    conv_desc.A.element,
    conv_desc.A.layout,

    conv_desc.B.element,

    conv_desc.B.layout,

    conv_desc.tile_description.math_instruction.element_accumulator,

    conv_desc.C.layout,

    conv_desc.tile_description.math_instruction.element_accumulator,

    conv_desc.element_epilogue);


  // conv operation table for conv2d or conv3d
  auto conv_operations = (conv_desc.kind == OperationKind::kConv2d) ?
                          Singleton::get().operation_table.conv2d_operations :

                          Singleton::get().operation_table.conv3d_operations;


  // find ConvFunctionalKey in convolution operation table
  auto operators_it = conv_operations.find(key);

  if (operators_it == conv_operations.end()) {
    return nullptr;

  }


  if (operators_it->second.empty()) {

    return nullptr;

  }



  // conv operation for same compute capability and iterator algorithm

  ConvPreferenceKey preference_key(
    conv_desc.tile_description.minimum_compute_capability,

    conv_desc.iterator_algorithm);


  auto it = operators_it->second.find(preference_key);

  if(it == operators_it->second.end()) {

    return nullptr;

  }



  // return matching conv opertion (same tile sizes and instruction)

  for (auto op : it->second) {

    if (op->description().tile_description == operation->description().tile_description) {

      return op;

    }

  }



  return nullptr;

}



/////////////////////////////////////////////////////////////////////////////////////////////////



/// Finds gemm operation instances with Gemm::ElementC = Reduction::ElementWorkspace

Operation const* find_gemm_operation_for_parallel_reduction(Operation const *operation) {



  GemmDescription const &gemm_desc =

    static_cast<GemmDescription const &>(operation->description());



  // if the curren gemm operation accumulator and output data type match return operation

  if(gemm_desc.tile_description.math_instruction.element_accumulator == gemm_desc.D.element) {

    return operation;

  }



  // find gemm operation to match gemm output and reduction workspace data type

  GemmFunctionalKey key(

    library::Provider::kCUTLASS,

    gemm_desc.gemm_kind,

    gemm_desc.tile_description.math_instruction.element_accumulator,

    gemm_desc.element_epilogue,

    gemm_desc.A.element,

    gemm_desc.A.layout,

    gemm_desc.transform_A,

    gemm_desc.B.element,

    gemm_desc.B.layout,

    gemm_desc.transform_B,

    gemm_desc.tile_description.math_instruction.element_accumulator, // C/D are same type

    LayoutTypeID::kColumnMajor,

    gemm_desc.tile_description.math_instruction.element_accumulator,

    LayoutTypeID::kColumnMajor);



  // gemm operation table

  auto gemm_operations = Singleton::get().operation_table.gemm_operations;



  // find ConvFunctionalKey in gemm operation table

  auto operators_it = gemm_operations.find(key);



  if (operators_it == gemm_operations.end()) {

    return nullptr;

  }



  if (operators_it->second.empty()) {

    return nullptr;

  }



  // gemm operation for same compute capability and max operand alignment

  int alignment = std::max(

    gemm_desc.A.alignment,

    gemm_desc.B.alignment);



  GemmPreferenceKey preference_key(

    gemm_desc.tile_description.minimum_compute_capability,

    alignment);



  auto it = operators_it->second.find(preference_key);



  if(it == operators_it->second.end()) {

    return nullptr;

  }



  // return matching gemm opertion (same tile shape, stages, warp count, and instruction)

  for (auto op : it->second) {

    if (op->description().tile_description == operation->description().tile_description) {

      return op;

    }

  }



  // return nullptr if no matching gemm operation found for parallel split-k reduction

  return nullptr;

}



/////////////////////////////////////////////////////////////////////////////////////////////////



} // namespace library

} // namespace cutlass



/////////////////////////////////////////////////////////////////////////////////////////////////