File size: 17,562 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/***************************************************************************************************

 * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

 * SPDX-License-Identifier: BSD-3-Clause

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are met:

 *

 * 1. Redistributions of source code must retain the above copyright notice, this

 * list of conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form must reproduce the above copyright notice,

 * this list of conditions and the following disclaimer in the documentation

 * and/or other materials provided with the distribution.

 *

 * 3. Neither the name of the copyright holder nor the names of its

 * contributors may be used to endorse or promote products derived from

 * this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 *

 **************************************************************************************************/
/* \file

   \brief Helper functions for mapping CUTLASS concepts to cuDNN.

*/
#if CUTLASS_ENABLE_CUDNN

#include <stdexcept>

#include "cutlass/profiler/cudnn_helpers.h"

namespace cutlass {
namespace profiler {

/////////////////////////////////////////////////////////////////////////////////////////////////
/// Converts a cuDNN status to cutlass::Status
Status get_cutlass_status(cudnnStatus_t cudnn_status) {

  if (cudnn_status == CUDNN_STATUS_SUCCESS) {
    return Status::kSuccess;
  }
  else if (cudnn_status == CUDNN_STATUS_INVALID_VALUE) {
    return Status::kErrorInvalidProblem;
  }
  if (cudnn_status == CUDNN_STATUS_NOT_SUPPORTED) {
    return Status::kErrorNotSupported;
  }
  return Status::kErrorInternal;
}

/// Converts a cuDNN status to cutlass::profiler::Disposition
Disposition get_cutlass_disposition(cudnnStatus_t cudnn_status) {

  if (cudnn_status == CUDNN_STATUS_INVALID_VALUE) {
    return Disposition::kInvalidProblem;
  }
  else if (cudnn_status == CUDNN_STATUS_NOT_SUPPORTED) {
    return Disposition::kNotSupported;
  }
  return Disposition::kFailed;
}

/// Checks cudnnStatus_t converts to cutlas status and returns if Status::kSuccess o.w. throws exception
Status checkCudnnErr(cudnnStatus_t cudnn_status) {
  Status cutlass_status = get_cutlass_status(cudnn_status);
  if(cutlass_status != Status::kSuccess) {
    throw std::runtime_error("checkCudnnErr failed");
  }
  return cutlass_status;
}

/// Maps a CUTLASS conv mode to a cuDNN cudnnConvolutionMode_t
bool get_cudnn_conv_mode(cudnnConvolutionMode_t &cudnn_conv_mode, conv::Mode conv_mode) {
  switch (conv_mode) {
    case conv::Mode::kCrossCorrelation:
      cudnn_conv_mode = CUDNN_CROSS_CORRELATION;
      return true;
    case conv::Mode::kConvolution:
      cudnn_conv_mode = CUDNN_CONVOLUTION;
      return true;
    default: break;
  }
  return false;
}

/// Maps a CUTLASS tensor layout to a cuDNN cudnnTensorFormat_t
bool get_cudnn_layout(cudnnTensorFormat_t &cudnn_layout, library::LayoutTypeID layout) {
  switch (layout) {
    // cudnn uses the same enum for TensorNC*HW along nDim (ConvDescription::conv_dim)
    case library::LayoutTypeID::kTensorNCHW:
    case library::LayoutTypeID::kTensorNCDHW:
      cudnn_layout = CUDNN_TENSOR_NCHW;
      return true;
    case library::LayoutTypeID::kTensorNHWC:
    case library::LayoutTypeID::kTensorNDHWC:
      cudnn_layout = CUDNN_TENSOR_NHWC;
      return true;
    default: break;
  }
  return false;
}

/// Maps a CUTLASS numeric type to a cuDNN cudnnDataType_t
bool get_cudnn_datatype(cudnnDataType_t &cudnn_element_type, library::NumericTypeID element_type) {
  switch (element_type) {
    case library::NumericTypeID::kF16:
      cudnn_element_type = CUDNN_DATA_HALF;
      return true;

    case library::NumericTypeID::kF32:
      cudnn_element_type = CUDNN_DATA_FLOAT;
      return true;
    
    case library::NumericTypeID::kF64: 
      cudnn_element_type = CUDNN_DATA_DOUBLE;
      return true;
    
    case library::NumericTypeID::kS2: 
      break;
  
    case library::NumericTypeID::kS4: 
      break;
  
    case library::NumericTypeID::kS8: 
      cudnn_element_type = CUDNN_DATA_INT8;
      return true;

    case library::NumericTypeID::kS16: 
      break;
 
    case library::NumericTypeID::kS32: 
      cudnn_element_type = CUDNN_DATA_INT32;
      return true;

    case library::NumericTypeID::kS64: 
      break;

    case library::NumericTypeID::kU2: 
      break;
  
    case library::NumericTypeID::kU4: 
      break;
  
    case library::NumericTypeID::kU8: 
      cudnn_element_type = CUDNN_DATA_UINT8;
      return true;

    case library::NumericTypeID::kU16: 
      break;
    
    case library::NumericTypeID::kU32: 
      break;
    
    case library::NumericTypeID::kU64: 
      break;

    case library::NumericTypeID::kB1: 
      break;
  
    case library::NumericTypeID::kInvalid:
  
    default: 
      break;
  }

  return false;
}

/// Maps CUTLASS math OpcodeClassID and MathOperationID to cuDNN math_type
bool get_cudnn_mathtype(cudnnMathType_t &cudnn_math_type, library::ConvDescription const &conv_desc) {

  switch (conv_desc.tile_description.math_instruction.opcode_class) {

    case library::OpcodeClassID::kTensorOp:
    {
      cudnn_math_type = CUDNN_TENSOR_OP_MATH;

      library::MathOperationID math_op = conv_desc.tile_description.math_instruction.math_operation;
      
      // Allow conversion on input data type for fast math operations
      if (math_op == library::MathOperationID::kMultiplyAddFastF16 || 
        math_op == library::MathOperationID::kMultiplyAddFastBF16) 
      {
        cudnn_math_type = CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION;
      }

      return true;
    }
    case library::OpcodeClassID::kSimt:
      #if (defined(CUDNN_VERSION) && CUDNN_VERSION <= 8000)
        cudnn_math_type = CUDNN_DEFAULT_MATH;
      #else
        cudnn_math_type = CUDNN_FMA_MATH;
      #endif
      return true;
  }

  return false;
}

/// Cudnn compute type seems to be hardcoded to float (To handle a possible cudnn issue)
float cast_cudnn_compute_type_to_float(library::NumericTypeID type, void const * src) {

  switch (type) {
    case library::NumericTypeID::kF16:
    {
      return float(*(static_cast<half_t const*>(src)));
    }
    case library::NumericTypeID::kF32:
    {
      return float(*(static_cast<float const*>(src)));
    }
    case library::NumericTypeID::kS32:
    {
      return float(*(static_cast<int const*>(src)));
    }
    default:
      throw std::runtime_error("Data type handled in cast_compute_type_to_float");
  }
}

/////////////////////////////////////////////////////////////////////////////////////////////////
/// Returns a status if cuDNN can satisfy a particular Conv2d description
Status cudnn_satisfies(

  library::ConvDescription const &desc, 

  library::Conv2dConfiguration const &configuration) {
  
  auto const &a_tensor = desc.A;
  auto const &b_tensor = desc.B;
  auto const &c_tensor = desc.C;
  auto const &math_instruction = desc.tile_description.math_instruction;

  if(a_tensor.element != b_tensor.element) {
    return Status::kErrorInvalidDataType;
  }

  ////////////////////////  Convolution output dimensions p and q ///////////////////////
  // Cutlass convolutions support arbitrary output dimensions and not constrained by   //
  // input, filter, padding, striding, dilation sizes.                                 //
  // cuDNN sets the output dimensions (p, q) using following equations:                //
  //                                                                                   //
  // output = div_up(input + 2 * pad - ((filter - 1) * dilation + 1) + 1, stride)      //
  // where; div_up(a, b) : (a - 1)/b + 1                                               //
  //                                                                                   //
  // Before launching cudnn verification or profiling check that output p and q        //
  // dimensions are cuDNN compliant.                                                   //
  //                                                                                   //
  // If user sets output p and q which do not follow above constraints, cutlass conv,  //
  // host reference, device reference can run. However, cudnn convolution returns      //
  // "Invalid problem"                                                                 //
  //                                                                                   //
  ///////////////////////////////////////////////////////////////////////////////////////

  // check conv output dimension p for cudnn
  int cudnn_output_p = 
  (
    (
      configuration.problem_size.H + 
      2 * configuration.problem_size.pad_h - 
      ((configuration.problem_size.R - 1) * 
      configuration.problem_size.dilation_h + 1)
    ) / 
    (configuration.problem_size.stride_h) 
    + 1
  );

  if (cudnn_output_p != configuration.problem_size.P) {
    return Status::kErrorInvalidProblem;
  }

  // check conv output dimension q for cudnn
  int cudnn_output_q = 
  (
    (
      configuration.problem_size.W + 
      2 * configuration.problem_size.pad_w - 
      ((configuration.problem_size.S - 1) * 
      configuration.problem_size.dilation_w + 1)
    ) / 
    (configuration.problem_size.stride_w) 
    + 1
  );

  if (cudnn_output_q != configuration.problem_size.Q) {
    return Status::kErrorInvalidProblem;
  }
  //////////////////////////////////////////////////////////////////////////////////////

  // conv operator with input=FP16, accumulator=FP32, output=FP32 datatype 
  if (a_tensor.element ==  library::NumericTypeID::kF16 && 
      b_tensor.element ==  library::NumericTypeID::kF16 &&
      math_instruction.element_accumulator == library::NumericTypeID::kF32 &&
      c_tensor.element == library::NumericTypeID::kF32
      ) {

    return Status::kErrorNotSupported;
  }

  if (a_tensor.element ==  library::NumericTypeID::kBF16 || 
      b_tensor.element ==  library::NumericTypeID::kBF16 ||
      c_tensor.element == library::NumericTypeID::kBF16
      ) {

    return Status::kErrorNotSupported;
  }

  // TF32 input not supported in cuDNN
  if (a_tensor.element ==  library::NumericTypeID::kTF32 || 
      b_tensor.element ==  library::NumericTypeID::kTF32 ||
      c_tensor.element == library::NumericTypeID::kTF32
      ) {

    return Status::kErrorNotSupported;
  }

  if (a_tensor.element ==  library::NumericTypeID::kS8 || 
      b_tensor.element ==  library::NumericTypeID::kS8 ||
      c_tensor.element == library::NumericTypeID::kS8
      ) {

    return Status::kErrorNotSupported;
  }

  if (a_tensor.element ==  library::NumericTypeID::kU8 || 
      b_tensor.element ==  library::NumericTypeID::kU8 ||
      c_tensor.element == library::NumericTypeID::kU8
      ) {

    return Status::kErrorNotSupported;
  }

  if (a_tensor.element ==  library::NumericTypeID::kS4 || 
      b_tensor.element ==  library::NumericTypeID::kS4 ||
      c_tensor.element == library::NumericTypeID::kS4
      ) {

    return Status::kErrorNotSupported;
  }

  if (a_tensor.element ==  library::NumericTypeID::kU4 || 
      b_tensor.element ==  library::NumericTypeID::kU4 ||
      c_tensor.element == library::NumericTypeID::kU4
      ) {

    return Status::kErrorNotSupported;
  }

  return Status::kSuccess;
}

/////////////////////////////////////////////////////////////////////////////////////////////////

/// Returns a status if cuDNN can satisfy a particular Conv3d description
Status cudnn_satisfies(

  library::ConvDescription const &desc, 

  library::Conv3dConfiguration const &configuration) {
  
  auto const &a_tensor = desc.A;
  auto const &b_tensor = desc.B;
  auto const &c_tensor = desc.C;
  auto const &math_instruction = desc.tile_description.math_instruction;

  if(a_tensor.element != b_tensor.element) {
    return Status::kErrorInvalidDataType;
  }

  ////////////////////////  Convolution output dimensions p and q ///////////////////////
  // Cutlass convolutions support arbitrary output dimensions and not constrained by   //
  // input, filter, padding, striding, dilation sizes.                                 //
  // cuDNN sets the output dimensions (p, q) using following equations:                //
  //                                                                                   //
  // output = div_up(input + 2 * pad - ((filter - 1) * dilation + 1) + 1, stride)      //
  // where; div_up(a, b) : (a - 1)/b + 1                                               //
  //                                                                                   //
  // Before launching cudnn verification or profiling check that output p and q        //
  // dimensions are cuDNN compliant.                                                   //
  //                                                                                   //
  // If user sets output p and q which do not follow above constraints, cutlass conv,  //
  // host reference, device reference can run. However, cudnn convolution returns      //
  // "Invalid problem"                                                                 //
  //                                                                                   //
  ///////////////////////////////////////////////////////////////////////////////////////

  // check conv output dimension z for cudnn
  int cudnn_output_z = 
  (
    (
      configuration.problem_size.D + 
      2 * configuration.problem_size.pad_d - 
      ((configuration.problem_size.T - 1) * 
      configuration.problem_size.dilation_d + 1)
    ) / 
    (configuration.problem_size.stride_d) 
    + 1
  );

  if (cudnn_output_z != configuration.problem_size.Z) {
    return Status::kErrorInvalidProblem;
  }

  // check conv output dimension p for cudnn
  int cudnn_output_p = 
  (
    (
      configuration.problem_size.H + 
      2 * configuration.problem_size.pad_h - 
      ((configuration.problem_size.R - 1) * 
      configuration.problem_size.dilation_h + 1)
    ) / 
    (configuration.problem_size.stride_h) 
    + 1
  );

  if (cudnn_output_p != configuration.problem_size.P) {
    return Status::kErrorInvalidProblem;
  }

  // check conv output dimension q for cudnn
  int cudnn_output_q = 
  (
    (
      configuration.problem_size.W + 
      2 * configuration.problem_size.pad_w - 
      ((configuration.problem_size.S - 1) * 
      configuration.problem_size.dilation_w + 1)
    ) / 
    (configuration.problem_size.stride_w) 
    + 1
  );

  if (cudnn_output_q != configuration.problem_size.Q) {
    return Status::kErrorInvalidProblem;
  }
  //////////////////////////////////////////////////////////////////////////////////////

  // conv operator with input, accumulator, output datatype of (hss) are not supported 
  // in cuDNN
  if (a_tensor.element ==  library::NumericTypeID::kF16 && 
      b_tensor.element ==  library::NumericTypeID::kF16 &&
      math_instruction.element_accumulator == library::NumericTypeID::kF32 &&
      c_tensor.element == library::NumericTypeID::kF32
      ) {

    return Status::kErrorNotSupported;
  }

  if (a_tensor.element ==  library::NumericTypeID::kBF16 || 
      b_tensor.element ==  library::NumericTypeID::kBF16 ||
      c_tensor.element == library::NumericTypeID::kBF16
      ) {

    return Status::kErrorNotSupported;
  }

  if (a_tensor.element ==  library::NumericTypeID::kTF32 || 
      b_tensor.element ==  library::NumericTypeID::kTF32 ||
      c_tensor.element == library::NumericTypeID::kTF32
      ) {

    return Status::kErrorNotSupported;
  }

  if (a_tensor.element ==  library::NumericTypeID::kS8 || 
      b_tensor.element ==  library::NumericTypeID::kS8 ||
      c_tensor.element == library::NumericTypeID::kS8
      ) {

    return Status::kErrorNotSupported;
  }

  // S4 not supported in cuDNN 
  if (a_tensor.element ==  library::NumericTypeID::kS4 || 
      b_tensor.element ==  library::NumericTypeID::kS4 ||
      c_tensor.element == library::NumericTypeID::kS4
      ) {

    return Status::kErrorNotSupported;
  }

  return Status::kSuccess;
}

/////////////////////////////////////////////////////////////////////////////////////////////////

} // namespace profiler
} // namespace cutlass

#endif