Spaces:
Sleeping
Sleeping
File size: 73,947 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 |
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
#include "mask.h"
#include "dropout.h"
#include "rotary.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
inline __device__ void compute_attn_1rowblock(const Params ¶ms, const int bidb, const int bidh, const int m_block) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int kNWarps = Kernel_traits::kNWarps;
auto seed_offset = at::cuda::philox::unpack(params.philox_args);
flash::Dropout dropout(std::get<0>(seed_offset), std::get<1>(seed_offset), params.p_dropout_in_uint8_t,
bidb, bidh, tidx, params.h);
// Save seed and offset for backward, before any early exiting. Otherwise the 0-th thread block might
// exit early and no one saves the rng states.
if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
params.rng_state[0] = std::get<0>(seed_offset);
params.rng_state[1] = std::get<1>(seed_offset);
}
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
if (Is_causal || Is_local) {
n_block_max = std::min(n_block_max,
cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
// printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
// }
}
// We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
// Otherwise we might read OOB elements from gK and gV.
if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
+ binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
make_shape(binfo.actual_seqlen_q, params.h, params.d),
make_stride(params.o_row_stride, params.o_head_stride, _1{}));
Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
Tensor mLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr)),
make_shape(params.b, params.h, params.seqlen_q),
make_stride(params.h * params.seqlen_q, params.seqlen_q, _1{}));
Tensor gLSE = local_tile(mLSE(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
Tensor tOrO = make_tensor<Element>(shape(tOgO));
clear(tOrO);
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
}
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
);
#pragma unroll
for (int m = 0; m < size<1>(tOgO); ++m) {
const int row = get<0>(tOcO(0, m, 0));
if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
}
return;
}
// if (tidx == 0) { printf("m_block = %d, n_block_min = %d, n_block_max = %d\n", m_block, n_block_min, n_block_max); }
// We iterate over the blocks in reverse order. This is because the last block is the only one
// that needs masking when we read K and V from global memory. Moreover, iterating in reverse
// might save us 1 register (we just need n_block instead of both n_block and n_block_max).
const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
+ m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;
Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr)
+ binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
make_shape(binfo.actual_seqlen_q, params.h, params.d),
make_stride(params.q_row_stride, params.q_head_stride, _1{}));
Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
Tensor mK = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.k_ptr)
+ binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)),
make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
make_stride(params.k_row_stride, params.k_head_stride, _1{}));
Tensor gK = local_tile(mK(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_coord(_, 0)); // (kBlockN, kHeadDim, nblocksN)
Tensor mV = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.v_ptr)
+ binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)),
make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
make_stride(params.v_row_stride, params.v_head_stride, _1{}));
Tensor gV = local_tile(mV(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_coord(_, 0)); // (kBlockN, kHeadDim, nblocksN)
Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
Shape<Int<kBlockM>, Int<kBlockN>>{},
make_stride(params.seqlen_k_rounded, _1{}));
Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
typename Kernel_traits::SmemLayoutQ{});
// Careful we're using the same smem for sQ and sK | sV if Share_Q_K_smem;
Tensor sK = make_tensor(sQ.data() + (Kernel_traits::Share_Q_K_smem ? 0 : size(sQ)),
typename Kernel_traits::SmemLayoutKV{});
Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K, nblocksN)
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K, nblocksN)
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
typename Kernel_traits::TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_thread_slice(tidx);
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
Tensor tOrVt = thr_mma.partition_fragment_B(sVtNoSwizzle); // (MMA, MMA_K,MMA_N)
Tensor tSgS = thr_mma.partition_C(gP);
Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_M, MMA_K
//
// Copy Atom retiling
//
auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
// if (cute::thread0()) {smem_thr_copy_Q.print_all();}
Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
// if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}
auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
Tensor tSsK = smem_thr_copy_K.partition_S(sK);
auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);
//
// PREDICATES
//
// // Allocate predicate tensors for m and n
// Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
// Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});
// Construct identity layout for sQ and sK
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
// Tensor tScQ = thr_mma.partition_A(cQ); // (MMA,MMA_M,MMA_K)
// if (cute::thread0()) {
// print(tScQ.layout()); printf("\n");
// for (int i = 0; i < size(tScQ); ++i) {
// printf("%d ", get<0>(tScQ(i)));
// }
// printf("\n");
// for (int i = 0; i < size(tScQ); ++i) {
// printf("%d ", get<1>(tScQ(i)));
// }
// printf("\n");
// }
// Repeat the partitioning with identity layouts
Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV); // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
// Allocate predicate tensors for k
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
// Set predicates for k bounds
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
#pragma unroll
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
}
// Prologue
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
binfo.actual_seqlen_q - m_block * kBlockM);
if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }
// // if (cute::thread(1, 0)) { print(tQsQ); }
// // Tensor sQNoSwizzle = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)), typename Kernel_traits::SmemLayoutQNoSwizzle{});
// // if (cute::thread0()) { print(sQNoSwizzle); }
if (Kernel_traits::Share_Q_K_smem) {
flash::cp_async_wait<0>();
__syncthreads();
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view)); // M
cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
__syncthreads();
}
int n_block = n_block_max - 1;
// We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block), tKsK, tKVcKV, tKVpKV,
binfo.actual_seqlen_k - n_block * kBlockN);
cute::cp_async_fence();
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
// __syncthreads();
if (Kernel_traits::Is_Q_in_regs && !Kernel_traits::Share_Q_K_smem) {
flash::cp_async_wait<1>();
__syncthreads();
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view)); // M
cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
}
clear(acc_o);
flash::Softmax<2 * size<1>(acc_o)> softmax;
const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
// For performance reason, we separate out two kinds of iterations:
// those that need masking on S, and those that don't.
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
// We will have at least 1 "masking" iteration.
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
constexpr int n_masking_steps = (!Is_causal && !Is_local)
? 1
: ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
#pragma unroll
for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
clear(acc_s);
flash::cp_async_wait<0>();
__syncthreads();
// Advance gV
if (masking_step > 0) {
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
} else {
// Clear the smem tiles to account for predicated off loads
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
cute::cp_async_fence();
flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
smem_thr_copy_Q, smem_thr_copy_K
);
// if (cute::thread0()) { print(acc_s); }
mask.template apply_mask<Is_causal, Is_even_MN>(
acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
);
flash::cp_async_wait<0>();
__syncthreads();
if (n_block > n_block_min) {
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
// This cp_async_fence needs to be in the if block, otherwise the synchronization
// isn't right and we get race conditions.
cute::cp_async_fence();
}
// TODO: when we have key_padding_mask we'll need to Check_inf
masking_step == 0
? softmax.template softmax_rescale_o</*Is_first=*/true, /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2)
: softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2);
// Convert acc_s from fp32 to fp16/bf16
Tensor rP = flash::convert_type<Element>(acc_s);
int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
int block_col_idx = n_block * (kBlockN / 32);
if (Return_softmax) {
Tensor rP_drop = make_fragment_like(rP);
cute::copy(rP, rP_drop);
dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
rP_drop, block_row_idx, block_col_idx, kNWarps
);
cute::copy(rP_drop, tSgS);
tSgS.data() = tSgS.data() + (-kBlockN);
}
if (Is_dropout) {
dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
}
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
// if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
// if (cute::thread0()) { print(tOrP); }
flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
// if (cute::thread0()) { print(scores); }
// This check is at the end of the loop since we always have at least 1 iteration
if (n_masking_steps > 1 && n_block <= n_block_min) {
--n_block;
break;
}
}
// These are the iterations where we don't need masking on S
for (; n_block >= n_block_min; --n_block) {
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
clear(acc_s);
flash::cp_async_wait<0>();
__syncthreads();
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
cute::cp_async_fence();
flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
smem_thr_copy_Q, smem_thr_copy_K
);
flash::cp_async_wait<0>();
__syncthreads();
if (n_block > n_block_min) {
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
// This cp_async_fence needs to be in the if block, otherwise the synchronization
// isn't right and we get race conditions.
cute::cp_async_fence();
}
mask.template apply_mask</*Causal_mask=*/false>(
acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
);
softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tensor rP = flash::convert_type<Element>(acc_s);
int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
int block_col_idx = n_block * (kBlockN / 32);
if (Return_softmax) {
Tensor rP_drop = make_fragment_like(rP);
cute::copy(rP, rP_drop);
dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
rP_drop, block_row_idx, block_col_idx, kNWarps
);
cute::copy(rP_drop, tSgS);
tSgS.data() = tSgS.data() + (-kBlockN);
}
if (Is_dropout) {
dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
}
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
// if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
}
// Epilogue
Tensor lse = softmax.template normalize_softmax_lse<Is_dropout>(acc_o, params.scale_softmax, params.rp_dropout);
// Convert acc_o from fp32 to fp16/bf16
Tensor rO = flash::convert_type<Element>(acc_o);
Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
// Partition sO to match the accumulator partitioning
auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
Tensor taccOrO = smem_thr_copy_O.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// sO has the same size as sQ, so we don't need to sync here.
if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }
cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
+ binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
make_shape(binfo.actual_seqlen_q, params.h, params.d),
make_stride(params.o_row_stride, params.o_head_stride, _1{}));
Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
Tensor mLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr)),
make_shape(params.b, params.h, params.seqlen_q),
make_stride(params.h * params.seqlen_q, params.seqlen_q, _1{}));
Tensor gLSE = local_tile(mLSE(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));
typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tensor tOsO = gmem_thr_copy_O.partition_S(sO); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
__syncthreads();
Tensor tOrO = make_tensor<Element>(shape(tOgO));
cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor taccOcO = thr_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K)
static_assert(decltype(size<0>(taccOcO))::value == 4);
// Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
if (get<1>(taccOcO_row(0)) == 0) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccOcO_row(mi));
if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
}
}
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(sO), size<1>(sO))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_O.partition_D(cO); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
}
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
inline __device__ void compute_attn_1rowblock_splitkv(const Params ¶ms, const int bidb, const int bidh, const int m_block, const int n_split_idx, const int num_n_splits) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int kNWarps = Kernel_traits::kNWarps;
using GmemTiledCopyO = std::conditional_t<
!Split,
typename Kernel_traits::GmemTiledCopyO,
typename Kernel_traits::GmemTiledCopyOaccum
>;
using ElementO = std::conditional_t<!Split, Element, ElementAccum>;
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("Is_even_MN = %d, is_cumulativ = %d, seqlen_k_cache = %d, actual_seqlen_k = %d\n", Is_even_MN, params.is_seqlens_k_cumulative, binfo.seqlen_k_cache, binfo.actual_seqlen_k); }
// if (threadIdx.x == 0 && blockIdx.y == 1 && blockIdx.z == 0) { printf("params.knew_ptr = %p, seqlen_k_cache + seqlen_knew = %d\n", params.knew_ptr, binfo.seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew)); }
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
const int n_blocks_per_split = ((params.seqlen_k + kBlockN - 1) / kBlockN + num_n_splits - 1) / num_n_splits;
const int n_block_min = !Is_local
? n_split_idx * n_blocks_per_split
: std::max(n_split_idx * n_blocks_per_split, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
int n_block_max = std::min(cute::ceil_div(binfo.actual_seqlen_k, kBlockN), (n_split_idx + 1) * n_blocks_per_split);
if (Is_causal || Is_local) {
n_block_max = std::min(n_block_max,
cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
}
if (n_block_min >= n_block_max) { // This also covers the case where n_block_max <= 0
// We exit early and write 0 to gOaccum and -inf to gLSEaccum.
// Otherwise we might read OOB elements from gK and gV,
// or get wrong results when we combine gOaccum from different blocks.
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
+ m_block * kBlockM) * params.d_rounded;
const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Shape<Int<kBlockM>>{}, Stride<_1>{});
GmemTiledCopyO gmem_tiled_copy_Oaccum;
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
clear(tOrOaccum);
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(gOaccum), size<1>(gOaccum))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
}
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
);
#pragma unroll
for (int m = 0; m < size<1>(tOgOaccum); ++m) {
const int row = get<0>(tOcO(0, m, 0));
if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSEaccum(row) = Split ? -INFINITY : INFINITY; }
}
return;
}
// We iterate over the blocks in reverse order. This is because the last block is the only one
// that needs masking when we read K and V from global memory. Moreover, iterating in reverse
// might save us 1 register (we just need n_block instead of both n_block and n_block_max).
// We move K and V to the last block.
const int bidb_cache = params.cache_batch_idx == nullptr ? bidb : params.cache_batch_idx[bidb];
const int *block_table = params.block_table == nullptr ? nullptr : params.block_table + bidb * params.block_table_batch_stride;
const int block_table_idx = block_table == nullptr ? 0 : (n_block_max - 1) * kBlockN / params.page_block_size;
const int block_table_offset = block_table == nullptr ? 0 : (n_block_max - 1) * kBlockN - block_table_idx * params.page_block_size;
const index_t row_offset_k = block_table == nullptr
? binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb_cache)
+ (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride
: block_table[block_table_idx] * params.k_batch_stride + block_table_offset * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
const index_t row_offset_v = block_table == nullptr
? binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb_cache)
+ (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride
: block_table[block_table_idx] * params.v_batch_stride + block_table_offset * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr) + binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
make_shape(binfo.actual_seqlen_q, params.h, params.d),
make_stride(params.q_row_stride, params.q_head_stride, _1{}));
Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_coord(m_block, 0)); // (kBlockM, kHeadDim)
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.k_row_stride, _1{}));
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("k_ptr = %p, row_offset_k = %d, gK_ptr = %p\n", params.k_ptr, row_offset_k, gK.data()); }
Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.v_row_stride, _1{}));
Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
typename Kernel_traits::SmemLayoutQ{});
Tensor sK = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutKV{});
Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
Tensor sVtNoSwizzle = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K)
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K)
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
typename Kernel_traits::TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_thread_slice(tidx);
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
Tensor tOrVt = thr_mma.partition_fragment_B(sVtNoSwizzle); // (MMA, MMA_K,MMA_N)
Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_M, MMA_K
//
// Copy Atom retiling
//
auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
Tensor tSsK = smem_thr_copy_K.partition_S(sK);
auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);
// PREDICATES
//
// // Allocate predicate tensors for m and n
// Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
// Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});
// Construct identity layout for sQ and sK
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
// Repeat the partitioning with identity layouts
Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV); // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
// Allocate predicate tensors for k
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
// Set predicates for k bounds
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
#pragma unroll
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
}
// Prologue
// Copy from Knew to K, optionally apply rotary embedding.
typename Kernel_traits::GmemTiledCopyRotcossin gmem_tiled_copy_rotary;
auto gmem_thr_copy_rotary = gmem_tiled_copy_rotary.get_thread_slice(tidx);
typename Kernel_traits::GmemTiledCopyRotcossinCont gmem_tiled_copy_rotary_cont;
auto gmem_thr_copy_rotary_cont = gmem_tiled_copy_rotary_cont.get_thread_slice(tidx);
if constexpr (Append_KV) {
// Even if we have MQA / GQA, all threadblocks responsible for the same KV head are writing to
// gmem. Technically it's a race condition, but they all write the same content anyway, and it's safe.
// We want to do this so that all threadblocks can proceed right after they finish writing the KV cache.
const index_t row_offset_cossin = ((n_block_max - 1) * kBlockN) * (params.rotary_dim / 2);
Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
make_stride(params.rotary_dim / 2, _1{}));
Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
make_stride(params.rotary_dim / 2, _1{}));
Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.rotary_dim / 2, _1{}));
Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.rotary_dim / 2, _1{}));
Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
// if (cute::thread(0, 0)) { printf("rotary_cos_ptr = %p, gCos.data() = %p, tRgCos.data() = %p, rotary_dim = %d\n", params.rotary_cos_ptr, gCos.data(), tRgCos.data(), params.rotary_dim); }
// if (cute::thread(8, 0)) { print_tensor(gCos); }
// if (cute::thread(0, 0)) { print_tensor(tRgCos); }
const index_t row_offset_knew = binfo.k_offset(params.knew_batch_stride, params.knew_row_stride, bidb)
+ ((n_block_max - 1) * kBlockN) * params.knew_row_stride + (bidh / params.h_h_k_ratio) * params.knew_head_stride;
const index_t row_offset_vnew = binfo.k_offset(params.vnew_batch_stride, params.vnew_row_stride, bidb)
+ ((n_block_max - 1) * kBlockN) * params.vnew_row_stride + (bidh / params.h_h_k_ratio) * params.vnew_head_stride;
// Subtract seqlen_k_cache * row stride so that conceptually gK and gKnew "line up". When we access them,
// e.g. if gK has 128 rows and gKnew has 64 rows, we access gK[:128] and gKNew[128:128 + 64].
// This maps to accessing the first 64 rows of knew_ptr.
Tensor gKnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.knew_ptr)
+ row_offset_knew - binfo.seqlen_k_cache * params.knew_row_stride),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.knew_row_stride, _1{}));
// if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("knew_ptr = %p, row_offset_knew = %d, gKnew_ptr = %p\n", params.knew_ptr, row_offset_knew, gKnew.data()); }
Tensor gVnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.vnew_ptr)
+ row_offset_vnew - binfo.seqlen_k_cache * params.vnew_row_stride),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.vnew_row_stride, _1{}));
Tensor tKgKnew = gmem_thr_copy_QKV.partition_S(gKnew); // (KCPY, KCPY_N, KCPY_K)
Tensor tVgVnew = gmem_thr_copy_QKV.partition_S(gVnew); // (VCPY, VCPY_N, VCPY_K)
const int n_block_copy_min = std::max(n_block_min, binfo.seqlen_k_cache / kBlockN);
auto tKgK_data = tKgK.data();
auto tVgV_data = tVgV.data();
for (int n_block = n_block_max - 1; n_block >= n_block_copy_min; n_block--) {
flash::copy_w_min_idx<Is_even_K>(
tVgVnew, tVgV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
);
tVgVnew.data() = tVgVnew.data() + (-int(kBlockN * params.vnew_row_stride));
if (params.rotary_dim == 0) {
flash::copy_w_min_idx<Is_even_K>(
tKgKnew, tKgK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
);
} else {
if (params.is_rotary_interleaved) {
// Don't clear OOB_K because we're writing to global memory
flash::copy_rotary_interleaved<Is_even_K, /*Clear_OOB_K=*/false>(
tKgKnew, tKgK, tRgCos, tRgSin, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
);
tRgCos.data() = tRgCos.data() + (-int(kBlockN * params.rotary_dim / 2));
tRgSin.data() = tRgSin.data() + (-int(kBlockN * params.rotary_dim / 2));
} else {
// Don't clear OOB_K because we're writing to global memory
flash::copy_rotary_contiguous<Is_even_K, /*Clear_OOB_K=*/false>(
tKgKnew, tKgK, tRgCosCont, tRgSinCont, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
);
tRgCosCont.data() = tRgCosCont.data() + (-int(kBlockN * params.rotary_dim / 2));
tRgSinCont.data() = tRgSinCont.data() + (-int(kBlockN * params.rotary_dim / 2));
}
}
tKgKnew.data() = tKgKnew.data() + (-int(kBlockN * params.knew_row_stride));
if (block_table == nullptr) {
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
} else {
if (n_block > n_block_copy_min) {
const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
const int block_table_offset_next = (n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
const int table_diff = block_table[block_table_idx_next] - block_table[block_table_idx_cur];
const int offset_diff = block_table_offset_next - block_table_offset_cur;
tVgV.data() = tVgV.data() + table_diff * params.v_batch_stride + offset_diff * params.v_row_stride;
tKgK.data() = tKgK.data() + table_diff * params.k_batch_stride + offset_diff * params.k_row_stride;
}
}
}
// Need this before we can read in K again, so that we'll see the updated K values.
__syncthreads();
tKgK.data() = tKgK_data;
tVgV.data() = tVgV_data;
}
// Read Q from gmem to smem, optionally apply rotary embedding.
if (!Append_KV || params.rotary_dim == 0) {
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
binfo.actual_seqlen_q - m_block * kBlockM);
} else {
const index_t row_offset_cossin = (binfo.seqlen_k_cache + (Is_causal || Is_local ? m_block * kBlockM : 0)) * (params.rotary_dim / 2);
// If not causal, all the queries get the same the cos/sin, taken at location seqlen_k_cache.
// We do this by setting the row stride of gCos / gSin to 0.
Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
if (params.is_rotary_interleaved) {
flash::copy_rotary_interleaved<Is_even_K>(
tQgQ, tQsQ, tRgCos, tRgSin, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
0, params.d, params.rotary_dim
);
} else {
flash::copy_rotary_contiguous<Is_even_K>(
tQgQ, tQsQ, tRgCosCont, tRgSinCont, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
0, params.d, params.rotary_dim
);
}
}
int n_block = n_block_max - 1;
// We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
binfo.actual_seqlen_k - n_block * kBlockN);
cute::cp_async_fence();
// flash::cp_async_wait<0>();
// __syncthreads();
// if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tKsK); }
// __syncthreads();
clear(acc_o);
flash::Softmax<2 * size<1>(acc_o)> softmax;
const float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
// For performance reason, we separate out two kinds of iterations:
// those that need masking on S, and those that don't.
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
// We will have at least 1 "masking" iteration.
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
constexpr int n_masking_steps = (!Is_causal && !Is_local)
? 1
: ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
#pragma unroll
for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
clear(acc_s);
flash::cp_async_wait<0>();
__syncthreads();
// Advance gV
if (masking_step > 0) {
if (block_table == nullptr) {
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
} else {
const int block_table_idx_cur = (n_block + 1) * kBlockN / params.page_block_size;
const int block_table_offset_cur = (n_block + 1) * kBlockN - block_table_idx_cur * params.page_block_size;
const int block_table_idx_next = n_block * kBlockN / params.page_block_size;
const int block_table_offset_next = n_block * kBlockN - block_table_idx_next * params.page_block_size;
tVgV.data() = tVgV.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.v_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.v_row_stride;
}
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
} else {
// Clear the smem tiles to account for predicated off loads
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
cute::cp_async_fence();
flash::gemm(
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
smem_thr_copy_Q, smem_thr_copy_K
);
// if (cute::thread0()) { print(acc_s); }
mask.template apply_mask<Is_causal, Is_even_MN>(
acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
);
flash::cp_async_wait<0>();
__syncthreads();
// if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tVsV); }
// __syncthreads();
if (n_block > n_block_min) {
// Advance gK
if (block_table == nullptr) {
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
} else {
const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
const int block_table_offset_next =(n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
tKgK.data() = tKgK.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.k_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.k_row_stride;
}
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
// This cp_async_fence needs to be in the if block, otherwise the synchronization
// isn't right and we get race conditions.
cute::cp_async_fence();
}
// We have key_padding_mask so we'll need to Check_inf
masking_step == 0
? softmax.template softmax_rescale_o</*Is_first=*/true, /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2)
: softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2);
// if (cute::thread0()) { print(scores_max); print(scores_sum); print(scores); }
// Convert acc_s from fp32 to fp16/bf16
Tensor rP = flash::convert_type<Element>(acc_s);
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
// if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
// This check is at the end of the loop since we always have at least 1 iteration
if (n_masking_steps > 1 && n_block <= n_block_min) {
--n_block;
break;
}
}
// These are the iterations where we don't need masking on S
for (; n_block >= n_block_min; --n_block) {
Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_M, MMA_N)
clear(acc_s);
flash::cp_async_wait<0>();
__syncthreads();
// Advance gV
if (block_table == nullptr) {
tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
} else {
const int block_table_idx_cur = (n_block + 1) * kBlockN / params.page_block_size;
const int block_table_offset_cur = (n_block + 1) * kBlockN - block_table_idx_cur * params.page_block_size;
const int block_table_idx_next = n_block * kBlockN / params.page_block_size;
const int block_table_offset_next = n_block * kBlockN - block_table_idx_next * params.page_block_size;
tVgV.data() = tVgV.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.v_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.v_row_stride;
}
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
cute::cp_async_fence();
flash::gemm(
acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
smem_thr_copy_Q, smem_thr_copy_K
);
flash::cp_async_wait<0>();
__syncthreads();
if (n_block > n_block_min) {
// Advance gK
if (block_table == nullptr) {
tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
} else {
const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
const int block_table_offset_next = (n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
tKgK.data() = tKgK.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.k_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.k_row_stride;
}
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
// This cp_async_fence needs to be in the if block, otherwise the synchronization
// isn't right and we get race conditions.
cute::cp_async_fence();
}
mask.template apply_mask</*Causal_mask=*/false>(
acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
);
softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tensor rP = flash::convert_type<Element>(acc_s);
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
// if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
}
// Epilogue
Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(acc_o, params.scale_softmax);
// if (cute::thread0()) { print(lse); }
Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(smem_)), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
// Partition sO to match the accumulator partitioning
using SmemTiledCopyO = std::conditional_t<
!Split,
typename Kernel_traits::SmemCopyAtomO,
typename Kernel_traits::SmemCopyAtomOaccum
>;
auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma);
auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor rO = flash::convert_type<ElementO>(acc_o);
Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// sOaccum is larger than sQ, so we need to syncthreads here
// TODO: allocate enough smem for sOaccum
if constexpr (Split) { __syncthreads(); }
cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
+ m_block * kBlockM) * params.d_rounded;
const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Shape<Int<kBlockM>>{}, Stride<_1>{});
// if (tidx == 0) { printf("row_offset_o = %d, bidh = %d, gOaccum = %p\n", row_offset_o, bidh, gOaccum.data()); }
GmemTiledCopyO gmem_tiled_copy_Oaccum;
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
__syncthreads();
Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor taccOcO = thr_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K)
static_assert(decltype(size<0>(taccOcO))::value == 4);
// Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
if (get<1>(taccOcO_row(0)) == 0) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccOcO_row(mi));
if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
}
}
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
}
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, typename Params>
inline __device__ void compute_attn(const Params ¶ms) {
const int m_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// We want the fwd and bwd to generate the same dropout pattern (RNG), without restricting
// them to have the same number of threads or have to traverse the attention matrix
// in the same order.
// In the Philox RNG, we use the offset to store the batch, head, and the lane id
// (within a warp). We use the subsequence to store the location of the 16 x 32 blocks within
// the attention matrix. This way, as long as we have the batch, head, and the location of
// the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.
flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax>(params, bidb, bidh, m_block);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV, typename Params>
inline __device__ void compute_attn_splitkv(const Params ¶ms) {
const int m_block = blockIdx.x;
// The block index for the batch.
const int bidb = Split ? blockIdx.z / params.h : blockIdx.y;
// The block index for the head.
const int bidh = Split ? blockIdx.z - bidb * params.h : blockIdx.z;
const int n_split_idx = Split ? blockIdx.y : 0;
const int num_n_splits = Split ? gridDim.y : 1;
flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, int kBlockM, int Log_max_splits, bool Is_even_K, typename Params>
inline __device__ void combine_attn_seqk_parallel(const Params ¶ms) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
constexpr int kMaxSplits = 1 << Log_max_splits;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int kNThreads = Kernel_traits::kNThreads;
static_assert(kMaxSplits <= 128, "kMaxSplits must be <= 128");
static_assert(kBlockM == 4 || kBlockM == 8 || kBlockM == 16 || kBlockM == 32, "kBlockM must be 4, 8, 16 or 32");
static_assert(kNThreads == 128, "We assume that each block has 128 threads");
// Shared memory.
// kBlockM + 1 instead of kBlockM to reduce bank conflicts.
__shared__ ElementAccum sLSE[kMaxSplits][kBlockM + 1];
// The thread and block index.
const int tidx = threadIdx.x;
const int bidx = blockIdx.x;
const index_t row_offset_lse = bidx * kBlockM;
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lse),
Shape<Int<kMaxSplits>, Int<kBlockM>>{},
make_stride(params.b * params.h * params.seqlen_q, _1{}));
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
Shape<Int<kBlockM>>{}, Stride<_1>{});
constexpr int kNLsePerThread = (kMaxSplits * kBlockM + kNThreads - 1) / kNThreads;
// Read the LSE values from gmem and store them in shared memory, then tranpose them.
constexpr int kRowsPerLoadLSE = kNThreads / kBlockM;
#pragma unroll
for (int l = 0; l < kNLsePerThread; ++l) {
const int row = l * kRowsPerLoadLSE + tidx / kBlockM;
const int col = tidx % kBlockM;
ElementAccum lse = (row < params.num_splits && col < params.b * params.h * params.seqlen_q - bidx * kBlockM) ? gLSEaccum(row, col) : -INFINITY;
if (row < kMaxSplits) { sLSE[row][col] = lse; }
// if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse); }
}
// if (bidx == 1 && tidx < 32) { printf("tidx = %d, row_offset_lse = %d, lse = %f\n", tidx, row_offset_lse, lse_accum(0)); }
__syncthreads();
Tensor lse_accum = make_tensor<ElementAccum>(Shape<Int<kNLsePerThread>>{});
constexpr int kRowsPerLoadTranspose = std::min(kRowsPerLoadLSE, kMaxSplits);
// To make sure that kMaxSplits is within 1 warp: we decide how many elements within kMaxSplits
// each thread should hold. If kMaxSplits = 16, then each thread holds 2 elements (128 threads,
// kBlockM rows, so each time we load we can load 128 / kBlockM rows).
// constexpr int kThreadsPerSplit = kMaxSplits / kRowsPerLoadTranspose;
// static_assert(kThreadsPerSplit <= 32);
static_assert(kRowsPerLoadTranspose <= 32);
static_assert(kNLsePerThread * kRowsPerLoadTranspose <= kMaxSplits);
#pragma unroll
for (int l = 0; l < kNLsePerThread; ++l) {
const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
const int col = tidx / kRowsPerLoadTranspose;
lse_accum(l) = (row < kMaxSplits && col < kBlockM) ? sLSE[row][col] : -INFINITY;
// if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse_accum(l)); }
}
// Compute the logsumexp of the LSE along the split dimension.
ElementAccum lse_max = lse_accum(0);
#pragma unroll
for (int l = 1; l < kNLsePerThread; ++l) { lse_max = max(lse_max, lse_accum(l)); }
MaxOp<float> max_op;
lse_max = Allreduce<kRowsPerLoadTranspose>::run(lse_max, max_op);
lse_max = lse_max == -INFINITY ? 0.0f : lse_max; // In case all local LSEs are -inf
float lse_sum = expf(lse_accum(0) - lse_max);
#pragma unroll
for (int l = 1; l < kNLsePerThread; ++l) { lse_sum += expf(lse_accum(l) - lse_max); }
SumOp<float> sum_op;
lse_sum = Allreduce<kRowsPerLoadTranspose>::run(lse_sum, sum_op);
// For the case where all local lse == -INFINITY, we want to set lse_logsum to INFINITY. Otherwise
// lse_logsum is log(0.0) = -INFINITY and we get NaN when we do lse_accum(l) - lse_logsum.
ElementAccum lse_logsum = (lse_sum == 0.f || lse_sum != lse_sum) ? INFINITY : logf(lse_sum) + lse_max;
// if (bidx == 0 && tidx < 32) { printf("tidx = %d, lse = %f, lse_max = %f, lse_logsum = %f\n", tidx, lse_accum(0), lse_max, lse_logsum); }
if (tidx % kRowsPerLoadTranspose == 0 && tidx / kRowsPerLoadTranspose < kBlockM) { gLSE(tidx / kRowsPerLoadTranspose) = lse_logsum; }
// Store the scales exp(lse - lse_logsum) in shared memory.
#pragma unroll
for (int l = 0; l < kNLsePerThread; ++l) {
const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
const int col = tidx / kRowsPerLoadTranspose;
if (row < params.num_splits && col < kBlockM) { sLSE[row][col] = expf(lse_accum(l) - lse_logsum); }
}
__syncthreads();
const index_t row_offset_oaccum = bidx * kBlockM * params.d_rounded;
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
Stride<Int<kHeadDim>, _1>{});
constexpr int kBlockN = kNThreads / kBlockM;
using GmemLayoutAtomOaccum = Layout<Shape<Int<kBlockM>, Int<kBlockN>>, Stride<Int<kBlockN>, _1>>;
using GmemTiledCopyOaccum = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
GmemLayoutAtomOaccum{},
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per store
GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
clear(tOrO);
// Predicates
Tensor cOaccum = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});
// Repeat the partitioning with identity layouts
Tensor tOcOaccum = gmem_thr_copy_Oaccum.partition_S(cOaccum);
Tensor tOpOaccum = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tOpOaccum); ++k) { tOpOaccum(k) = get<1>(tOcOaccum(0, 0, k)) < params.d; }
}
// Load Oaccum in then scale and accumulate to O
for (int split = 0; split < params.num_splits; ++split) {
flash::copy</*Is_even_MN=*/false, Is_even_K>(
gmem_tiled_copy_Oaccum, tOgOaccum, tOrOaccum, tOcOaccum, tOpOaccum, params.b * params.h * params.seqlen_q - bidx * kBlockM
);
#pragma unroll
for (int m = 0; m < size<1>(tOrOaccum); ++m) {
int row = get<0>(tOcOaccum(0, m, 0));
ElementAccum lse_scale = sLSE[split][row];
#pragma unroll
for (int k = 0; k < size<2>(tOrOaccum); ++k) {
#pragma unroll
for (int i = 0; i < size<0>(tOrOaccum); ++i) {
tOrO(i, m, k) += lse_scale * tOrOaccum(i, m, k);
}
}
// if (cute::thread0()) { printf("lse_scale = %f, %f\n", sLSE[split][0], sLSE[split][1]); print(tOrOaccum); }
}
tOgOaccum.data() = tOgOaccum.data() + params.b * params.h * params.seqlen_q * params.d_rounded;
}
// if (cute::thread0()) { print_tensor(tOrO); }
Tensor rO = flash::convert_type<Element>(tOrO);
// Write to gO
#pragma unroll
for (int m = 0; m < size<1>(rO); ++m) {
const int idx = bidx * kBlockM + get<0>(tOcOaccum(0, m, 0));
if (idx < params.b * params.h * params.seqlen_q) {
const int batch_idx = idx / (params.h * params.seqlen_q);
const int head_idx = (idx - batch_idx * (params.h * params.seqlen_q)) / params.seqlen_q;
// The index to the rows of Q
const int row = idx - batch_idx * (params.h * params.seqlen_q) - head_idx * params.seqlen_q;
auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride
+ head_idx * params.o_head_stride + row * params.o_row_stride;
#pragma unroll
for (int k = 0; k < size<2>(rO); ++k) {
if (Is_even_K || tOpOaccum(k)) {
const int col = get<1>(tOcOaccum(0, m, k));
Tensor gO = make_tensor(make_gmem_ptr(o_ptr + col),
Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
// TODO: Should check if this is using vectorized store, but it seems pretty fast
copy(rO(_, m, k), gO);
// if (bidx == 0 && tidx == 0) { printf("tidx = %d, idx = %d, batch_idx = %d, head_idx = %d, row = %d, col = %d\n", tidx, idx, batch_idx, head_idx, row, col); print(rO(_, m, k)); print(gO); }
// reinterpret_cast<uint64_t *>(o_ptr)[col / 4] = recast<uint64_t>(rO)(0, m, k);
}
}
}
}
}
} // namespace flash
|