File size: 10,664 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include <torch/extension.h>
#include "ATen/cuda/CUDAContext.h"
#include <c10/cuda/CUDAGuard.h>


#include "decoder_masked_multihead_attention.h"

#define CHECK_DEVICE(x) TORCH_CHECK(x.device().type() == torch::kCUDA, #x " must be on CUDA")
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")

#define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, NAME, ...)                  \
  if (TYPE == at::ScalarType::Half) {                                      \
    using scalar_t = at::Half;                                             \
    __VA_ARGS__();                                                         \
  } else if (TYPE == at::ScalarType::BFloat16) {                           \
    using scalar_t = at::BFloat16;                                         \
    __VA_ARGS__();                                                         \
  } else if (TYPE == at::ScalarType::Float)  {                             \
    using scalar_t = float;                                                \
    __VA_ARGS__();                                                         \
  } else {                                                                 \
    AT_ERROR(#NAME, " not implemented for type '", toString(TYPE), "'"); \
  }

template<typename T>

void masked_multihead_attention(const Masked_multihead_attention_params<T>& params,

                                const cudaStream_t& stream);

template<typename T>

void cross_multihead_attention(const Masked_multihead_attention_params<T>& params,

                               const cudaStream_t& stream);

template<typename T>
struct SATypeConverter {
    using Type = T;
};

template<>
struct SATypeConverter<at::Half> {
    using Type = uint16_t;
};

template<>
struct SATypeConverter<at::BFloat16> {
    using Type = __nv_bfloat16;
};

template <typename T>
void set_params(Masked_multihead_attention_params<T> &params,

                const size_t batch_size,

                const size_t nheads,

                const size_t nheads_kv,

                const size_t memory_max_seqlen,

                const size_t headdim,

                const int timestep,

                const int rotary_embedding_dim,

                const float rotary_base,

                const bool neox_rotary_style,

                const int q_batch_stride,

                const int k_batch_stride,

                const int v_batch_stride,

                const int nnz_heads,

                T *q_ptr,

                T *k_ptr,

                T *v_ptr,

                T *k_cache_ptr,

                T *v_cache_ptr,

                int *length_per_sample,

                T *rotary_cos,

                T *rotary_sin,

                T *out_ptr,

                int *nnz_head_idx) {
    // Reset the parameters
    memset(&params, 0, sizeof(params));
    params.q = q_ptr;
    params.k = k_ptr;
    params.v = v_ptr;
    params.q_bias = nullptr;
    params.k_bias = nullptr;
    params.v_bias = nullptr;
    params.k_cache = k_cache_ptr;
    params.v_cache = v_cache_ptr;
    params.out = out_ptr;
    params.cache_indir = nullptr;
    params.stride_q = q_batch_stride;
    params.stride_k = k_batch_stride;
    params.stride_v = v_batch_stride;
    params.batch_size = batch_size;
    params.beam_width = 1;
    params.memory_max_len = memory_max_seqlen;
    params.num_heads = nheads;
    params.num_heads_kv = nheads_kv;
    params.num_heads_q_kv_ratio = nheads / nheads_kv;
    params.nnz_heads = nnz_heads;
    params.hidden_size_per_head = headdim;
    params.rotary_embedding_dim = rotary_embedding_dim;
    params.rotary_base = rotary_base;
    params.neox_rotary_style = neox_rotary_style;
    params.timestep = timestep;
    params.inv_sqrt_dh = 1.f / sqrt(float(headdim));
    params.total_padding_tokens = nullptr;
    params.masked_tokens = nullptr;
    params.prefix_prompt_lengths = nullptr;
    params.max_prefix_prompt_length = 0;
    params.relative_attention_bias = nullptr;
    params.relative_attention_bias_stride = 0;
    params.cross_attention_out = nullptr;
    params.max_decoder_seq_len = 0;
    params.is_return_cross_attentions = false;
    params.finished = nullptr;
    params.memory_length_per_sample = nullptr;
    params.length_per_sample = length_per_sample;
    params.rotary_cos = rotary_cos;
    params.rotary_sin = rotary_sin;
    params.nnz_head_idx = nnz_head_idx;
}

torch::Tensor single_query_attention(const torch::Tensor q,

                                     const torch::Tensor k,

                                     const torch::Tensor v,

                                     torch::Tensor k_cache,

                                     torch::Tensor v_cache,

                                     c10::optional<const torch::Tensor> length_per_sample_,

                                     c10::optional<const torch::Tensor> rotary_cos_,

                                     c10::optional<const torch::Tensor> rotary_sin_,

                                     c10::optional<const torch::Tensor> nnz_head_idx_,

                                     const int timestep,

                                     int rotary_embedding_dim = 0,

                                     const float rotary_base = 10000.0f,

                                     const bool neox_rotary_style=true) {
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(k_cache); CHECK_DEVICE(v_cache);
    int batch_size = v_cache.size(0);
    int nheads = q.size(1);
    int nheads_kv = v_cache.size(1);
    int memory_max_seqlen = v_cache.size(2);
    int headdim = v_cache.size(3);
    auto input_type = q.scalar_type();
    TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);

    CHECK_SHAPE(q, batch_size, nheads, headdim);
    CHECK_SHAPE(k, batch_size, nheads_kv, headdim);
    CHECK_SHAPE(v, batch_size, nheads_kv, headdim);
    CHECK_SHAPE(v_cache, batch_size, nheads_kv, memory_max_seqlen, headdim);
    // k_cache shape: [B, H, Dh/x, L, x] where x=8 for fp16 and x=4 for fp32
    int packsize = k_cache.dtype() == torch::kFloat32 ? 4 : 8;
    CHECK_SHAPE(k_cache, batch_size, nheads_kv, headdim / packsize, memory_max_seqlen, packsize);
    TORCH_CHECK(q.stride(2) == 1 && q.stride(1) == headdim);
    TORCH_CHECK(k.stride(2) == 1 && k.stride(1) == headdim);
    TORCH_CHECK(v.stride(2) == 1 && v.stride(1) == headdim);
    CHECK_CONTIGUOUS(v_cache); CHECK_CONTIGUOUS(k_cache);

    TORCH_CHECK(q.scalar_type() == input_type);
    TORCH_CHECK(k.scalar_type() == input_type);
    TORCH_CHECK(v.scalar_type() == input_type);
    TORCH_CHECK(k_cache.scalar_type() == input_type);
    TORCH_CHECK(v_cache.scalar_type() == input_type);

    if (length_per_sample_.has_value()) {
        auto length_per_sample = length_per_sample_.value();
        CHECK_DEVICE(length_per_sample);
        CHECK_SHAPE(length_per_sample, batch_size);
        CHECK_CONTIGUOUS(length_per_sample);
        TORCH_CHECK(length_per_sample.dtype() == torch::kInt32);
    }

    if (rotary_cos_.has_value()) {
        auto rotary_cos = rotary_cos_.value();
        CHECK_DEVICE(rotary_cos);
        rotary_embedding_dim = rotary_cos.size(-1) * 2;
        CHECK_SHAPE(rotary_cos, batch_size, rotary_embedding_dim / 2);
        CHECK_CONTIGUOUS(rotary_cos);
        TORCH_CHECK(rotary_cos.scalar_type() == input_type);

        TORCH_CHECK(rotary_sin_.has_value());
        auto rotary_sin = rotary_sin_.value();
        CHECK_DEVICE(rotary_sin);
        CHECK_SHAPE(rotary_sin, batch_size, rotary_embedding_dim / 2);
        CHECK_CONTIGUOUS(rotary_sin);
        TORCH_CHECK(rotary_sin.scalar_type() == input_type);
    }

    if (nnz_head_idx_.has_value()) {
        auto nnz_head_idx = nnz_head_idx_.value();
        CHECK_DEVICE(nnz_head_idx);
        int nnz_heads = nnz_head_idx.size(0);
        CHECK_SHAPE(nnz_head_idx, nnz_heads);
        CHECK_CONTIGUOUS(nnz_head_idx);
        TORCH_CHECK(nnz_head_idx.dtype() == torch::kInt32);
    }

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    torch::Tensor out = torch::empty_like(q);

    DISPATCH_FLOAT_AND_HALF_AND_BF16(q.scalar_type(), "single_query_attention", [&] {
        using DataType = typename SATypeConverter<scalar_t>::Type;
        Masked_multihead_attention_params<DataType> params;
        set_params(params, batch_size, nheads, nheads_kv, memory_max_seqlen, headdim, timestep,
                   rotary_embedding_dim, rotary_base, neox_rotary_style,
                   q.stride(0), k.stride(0), v.stride(0),
                   nnz_head_idx_.has_value() ? nnz_head_idx_.value().size(0) : 0,
                   reinterpret_cast<DataType*>(q.data_ptr()),
                   reinterpret_cast<DataType*>(k.data_ptr()),
                   reinterpret_cast<DataType*>(v.data_ptr()),
                   reinterpret_cast<DataType*>(k_cache.data_ptr()),
                   reinterpret_cast<DataType*>(v_cache.data_ptr()),
                   length_per_sample_.has_value()
                       ? length_per_sample_.value().data_ptr<int>() : nullptr,
                   rotary_cos_.has_value()
                       ? reinterpret_cast<DataType*>(rotary_cos_.value().data_ptr()) : nullptr,
                   rotary_sin_.has_value()
                       ? reinterpret_cast<DataType*>(rotary_sin_.value().data_ptr()) : nullptr,
                   reinterpret_cast<DataType*>(out.data_ptr()),
                   nnz_head_idx_.has_value() ? nnz_head_idx_.value().data_ptr<int>() : nullptr
                   );
        auto stream = at::cuda::getCurrentCUDAStream();
        masked_multihead_attention(params, stream);
    });
    return out;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("single_query_attention", &single_query_attention, "Attention with a single query",
          py::arg("q"), py::arg("k"), py::arg("v"), py::arg("k_cache"), py::arg("v_cache"),
          py::arg("length_per_sample_"), py::arg("rotary_cos_"),
          py::arg("rotary_sin_"), py::arg("nnz_head_idx_"),
          py::arg("timestep"), py::arg("rotary_embedding_dim")=0,
          py::arg("rotary_base")=10000.0f, py::arg("neox_rotary_style")=true);
}