File size: 2,349 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include <torch/extension.h>

// CUDA forward declarations
std::vector<at::Tensor> softmax_xentropy_cuda(

    const at::Tensor &input,

    const at::Tensor &labels,

    const float smoothing,

    const int total_classes);

at::Tensor softmax_xentropy_backward_cuda(

    const at::Tensor &grad_loss,

    at::Tensor &logits,

    const at::Tensor &max_log_sum_exp,

    const at::Tensor &labels,

    const float smoothing,

    const bool inplace,

    const int total_classes);

// C++ interface

#define CHECK_CUDA(x) AT_ASSERTM(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

std::vector<at::Tensor> softmax_xentropy_forward(

    const at::Tensor &input,

    const at::Tensor &labels,

    const float smoothing,

    const int total_classes=-1) {
    // For tensor parallel cross entropy with smoothing, we want to pass in the total number
    // of classes so that smoothing can be applied correctly. If total_classes=-1, use the
    // last dimension of the input tensor.
    CHECK_INPUT(input);
    CHECK_INPUT(labels);

    return softmax_xentropy_cuda(input, labels, smoothing, total_classes);
}

at::Tensor softmax_xentropy_backward(

    const at::Tensor &grad_loss,

    at::Tensor &logits,

    const at::Tensor &max_log_sum_exp,

    const at::Tensor &labels,

    const float smoothing,

    const bool inplace,

    const int total_classes=-1)  {
    CHECK_INPUT(grad_loss);
    CHECK_INPUT(logits);
    CHECK_INPUT(max_log_sum_exp);
    CHECK_INPUT(labels);

    return softmax_xentropy_backward_cuda(grad_loss, logits, max_log_sum_exp, labels,
                                          smoothing, inplace, total_classes);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &softmax_xentropy_forward, "Softmax cross entropy loss with label smoothing forward (CUDA)", py::arg("input"), py::arg("labels"), py::arg("smoothing"), py::arg("total_classes")=-1);
    m.def("backward", &softmax_xentropy_backward, "Softmax cross entropy loss with label smoothing backward (CUDA)", py::arg("grad_loss"), py::arg("logits"), py::arg("max_log_sum_exp"), py::arg("labels"), py::arg("smoothing"), py::arg("inplace"), py::arg("total_classes")=-1);
}