Spaces:
Sleeping
Sleeping
File size: 26,543 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
// Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/csrc/xentropy/xentropy_kernel.cu
// TD [2022-09-17]: We make it work for bfloat16, and add an option to do the backward inplace (to save memory).
/**
* From PyTorch:
*
* Copyright (c) 2016- Facebook, Inc (Adam Paszke)
* Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
* Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
* Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
* Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
* Copyright (c) 2011-2013 NYU (Clement Farabet)
* Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
* Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
* Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
*
* From Caffe2:
*
* Copyright (c) 2016-present, Facebook Inc. All rights reserved.
*
* All contributions by Facebook:
* Copyright (c) 2016 Facebook Inc.
*
* All contributions by Google:
* Copyright (c) 2015 Google Inc.
* All rights reserved.
*
* All contributions by Yangqing Jia:
* Copyright (c) 2015 Yangqing Jia
* All rights reserved.
*
* All contributions from Caffe:
* Copyright(c) 2013, 2014, 2015, the respective contributors
* All rights reserved.
*
* All other contributions:
* Copyright(c) 2015, 2016 the respective contributors
* All rights reserved.
*
* Caffe2 uses a copyright model similar to Caffe: each contributor holds
* copyright over their contributions to Caffe2. The project versioning records
* all such contribution and copyright details. If a contributor wants to further
* mark their specific copyright on a particular contribution, they should
* indicate their copyright solely in the commit message of the change when it is
* committed.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
* and IDIAP Research Institute nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/NumericLimits.cuh>
// https://github.com/NVIDIA/apex/blob/master/csrc/type_shim.h
// #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, LEVEL, NAME, ...) \
switch(TYPE) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_##LEVEL = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_##LEVEL = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_##LEVEL = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
// #else
// #define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, LEVEL, NAME, ...) \
// switch(TYPE) \
// { \
// case at::ScalarType::Float: \
// { \
// using scalar_t_##LEVEL = float; \
// __VA_ARGS__; \
// break; \
// } \
// case at::ScalarType::Half: \
// { \
// using scalar_t_##LEVEL = at::Half; \
// __VA_ARGS__; \
// break; \
// } \
// default: \
// AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
// }
// #endif
#define ALIGN_BYTES 16
using Tensor = at::Tensor;
using TensorList = at::TensorList;
using ScalarType = at::ScalarType;
using at::acc_type;
template<typename T, typename AccumT, typename OutT>
struct LogSoftMaxForwardEpilogue {
__device__ __forceinline__ LogSoftMaxForwardEpilogue(AccumT max_input, AccumT sum)
: logsum(max_input + std::log(sum)) {}
__device__ __forceinline__ LogSoftMaxForwardEpilogue(AccumT max_log_sum_exp)
: logsum(max_log_sum_exp) {}
__device__ __forceinline__ OutT operator()(T input) const {
return static_cast<OutT>(input - logsum);
}
const AccumT logsum;
};
template<typename T, typename AccumT, typename OutT>
struct LogSoftMaxBackwardEpilogue {
__device__ __forceinline__ LogSoftMaxBackwardEpilogue(AccumT sum)
: sum(sum) {}
__device__ __forceinline__ T operator()(OutT gradOutput, OutT output) const {
return static_cast<T>(gradOutput - std::exp(static_cast<AccumT>(output)) * sum);
}
const AccumT sum;
};
const int max_threads = 1024;
inline dim3 SoftMax_getBlockSize(int ILP, uint64_t dim_size) {
uint64_t block_size = 1;
uint64_t max_block_size = std::min(dim_size / ILP, static_cast<uint64_t>(max_threads));
while (block_size < (max_block_size/2)) block_size *= 2;
// Launch at least a single warp - the kernel assumes that.
block_size = std::max(block_size, static_cast<uint64_t>(32));
return dim3(block_size);
}
template<typename T>
struct Add {
__device__ __forceinline__ T operator()(T a, T b) const {
return a + b;
}
};
template<typename T>
struct Max {
__device__ __forceinline__ T operator()(T a, T b) const {
return a < b ? b : a;
}
};
////////////////////////////////////////////////////////////////////////////////
// Regular kernel (fast when dim_size is large; requires inner_size == 1)
////////////////////////////////////////////////////////////////////////////////
template <typename T, typename AccumT>
struct MaxFloat
{
__device__ __forceinline__ AccumT operator()(AccumT max, T v) const {
return ::max(max, (AccumT)v);
}
};
template<typename T, typename AccumT>
struct AddFloat
{
__device__ __forceinline__ AccumT operator()(AccumT sum, T v) const {
return sum + v;
}
};
template<typename T, typename AccumT>
struct SumExpFloat
{
__device__ __forceinline__ SumExpFloat(AccumT v)
: max_k(v) {}
__device__ __forceinline__ AccumT operator()(AccumT sum, T v) const {
return sum + std::exp(v - max_k);
}
const AccumT max_k;
};
template <template<typename> class Reduction, typename AccumT>
__device__ __forceinline__ AccumT
blockReduce(AccumT* smem, AccumT val,
const Reduction<AccumT>& r,
AccumT defaultVal)
{
// To avoid RaW races from chaining blockReduce calls together, we need a sync here
__syncthreads();
smem[threadIdx.x] = val;
__syncthreads();
AccumT warpVal = defaultVal;
// First warp will perform per-warp reductions for the remaining warps
uint32_t mask = (((uint64_t)1) << (blockDim.x / 32)) - 1;
if (threadIdx.x < 32) {
int lane = threadIdx.x % 32;
if (lane < blockDim.x / 32) {
#pragma unroll
for (int i = 0; i < 32; ++i) {
warpVal = r(warpVal, smem[lane * 32 + i]);
}
__syncwarp(mask);
smem[lane] = warpVal;
}
}
__syncthreads();
// First thread will perform a reduction of the above per-warp reductions
AccumT blockVal = defaultVal;
if (threadIdx.x == 0) {
for (int i = 0; i < blockDim.x / 32; ++i) {
blockVal = r(blockVal, smem[i]);
}
smem[0] = blockVal;
}
// Sync and broadcast
__syncthreads();
return smem[0];
}
template <template<typename> class Reduction1, template<typename> class Reduction2, typename AccumT>
__device__ __forceinline__ void
blockReduce(AccumT* smem,
AccumT* reducVal1,
AccumT val1,
const Reduction1<AccumT>& r1,
AccumT defaultVal1,
AccumT* reducVal2,
AccumT val2,
const Reduction2<AccumT>& r2,
AccumT defaultVal2)
{
// To avoid RaW races from chaining blockReduce calls together, we need a sync here
__syncthreads();
smem[threadIdx.x] = val1;
smem[blockDim.x + threadIdx.x] = val2;
__syncthreads();
AccumT warpVal1 = defaultVal1;
AccumT warpVal2 = defaultVal2;
// First warp will perform per-warp reductions for the remaining warps
uint32_t mask = (((uint64_t)1) << (blockDim.x / 32)) - 1;
if (threadIdx.x < 32) {
int lane = threadIdx.x % 32;
if (lane < blockDim.x / 32) {
#pragma unroll
for (int i = 0; i < 32; ++i) {
warpVal1 = r1(warpVal1, smem[lane * 32 + i]);
warpVal2 = r2(warpVal2, smem[lane * 32 + i + blockDim.x]);
}
__syncwarp(mask);
smem[lane] = warpVal1;
smem[lane + blockDim.x] = warpVal2;
}
}
__syncthreads();
// First thread will perform a reduction of the above per-warp reductions
AccumT blockVal1 = defaultVal1;
AccumT blockVal2 = defaultVal2;
if (threadIdx.x == 0) {
for (int i = 0; i < blockDim.x / 32; ++i) {
blockVal1 = r1(blockVal1, smem[i]);
blockVal2 = r2(blockVal2, smem[i + blockDim.x]);
}
smem[0] = blockVal1;
smem[blockDim.x] = blockVal2;
}
// Sync and broadcast
__syncthreads();
*reducVal1 = smem[0];
*reducVal2 = smem[blockDim.x];
__syncthreads();
}
template <template<typename, typename> class Reduction, int ILP, typename T, typename AccumT>
__device__ __forceinline__ AccumT
ilpReduce(int shift,
T* data,
int size,
const Reduction<T, AccumT>& r,
AccumT defaultVal)
{
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LoadT;
AccumT threadVal = defaultVal;
int offset = threadIdx.x;
// shift and do 1
if(shift > 0){
data -= shift;
size += shift;
if(threadIdx.x >= shift){
threadVal = r(threadVal, data[offset]);
}
size -= blockDim.x;
data += blockDim.x;
}
int last = size % (ILP * blockDim.x);
T v[ILP];
LoadT* value = reinterpret_cast<LoadT*>(&v);
for (; offset * ILP < (size - last); offset += blockDim.x) {
*value = reinterpret_cast<LoadT*>(data)[offset];
for (int j = 0; j < ILP; ++j) {
threadVal = r(threadVal, v[j]);
}
}
offset = size - last + threadIdx.x;
// Epilogue
for (; offset < size; offset += blockDim.x)
threadVal = r(threadVal, data[offset]);
return threadVal;
}
template <template<typename, typename> class Reduction1, template<typename, typename> class Reduction2, int ILP, typename T, typename AccumT>
__device__ __forceinline__ void
ilpReduce(int shift,
T* data,
int size,
AccumT* reducVal1,
const Reduction1<T, AccumT>& r1,
AccumT defaultVal1,
AccumT* reducVal2,
const Reduction2<T, AccumT>& r2,
AccumT defaultVal2)
{
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LoadT;
AccumT threadVal1 = defaultVal1;
AccumT threadVal2 = defaultVal2;
int offset = threadIdx.x;
// shift and do 1
if(shift > 0){
data -= shift;
size += shift;
if(threadIdx.x >= shift){
threadVal1 = r1(threadVal1, data[offset]);
threadVal2 = r2(threadVal2, data[offset]);
}
size -= blockDim.x;
data += blockDim.x;
}
int last = size % (ILP * blockDim.x);
T v[ILP];
LoadT* value = reinterpret_cast<LoadT*>(&v);
for (; offset * ILP < (size - last); offset += blockDim.x) {
*value = reinterpret_cast<LoadT*>(data)[offset];
for (int j = 0; j < ILP; ++j) {
threadVal1 = r1(threadVal1, v[j]);
threadVal2 = r2(threadVal2, v[j]);
}
}
offset = size - last + threadIdx.x;
// Epilogue
for (; offset < size; offset += blockDim.x) {
threadVal1 = r1(threadVal1, data[offset]);
threadVal2 = r2(threadVal2, data[offset]);
}
*reducVal1 = threadVal1;
*reducVal2 = threadVal2;
}
template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t, template <typename, typename, typename> class Epilogue>
__global__ void
cunn_SoftMaxXEntropyForward(
accscalar_t *losses,
outscalar_t *max_log_sum_exp,
scalar_t *input,
int64_t *labels,
int64_t classes,
const float smoothing,
const int total_classes)
{
extern __shared__ unsigned char smem[];
auto sdata = reinterpret_cast<accscalar_t*>(smem);
// forward pointers to batch[blockIdx.x]
// each block handles a sample in the mini-batch
input += blockIdx.x * classes;
//output += blockIdx.x * classes;
const int shift = ((uint64_t)input) % ALIGN_BYTES / sizeof(scalar_t);
int64_t label = labels[blockIdx.x];
// find the max and sum
accscalar_t threadMax, threadSum, max_k, sum_k;
ilpReduce<MaxFloat, AddFloat, ILP, scalar_t, accscalar_t>(
shift, input, classes,
&threadMax, MaxFloat<scalar_t, accscalar_t>(),
-at::numeric_limits<accscalar_t>::max(),
&threadSum, AddFloat<scalar_t, accscalar_t>(),
static_cast<accscalar_t>(0));
blockReduce<Max, Add, accscalar_t>(
sdata,
&max_k, threadMax, Max<accscalar_t>(),
-at::numeric_limits<accscalar_t>::max(),
&sum_k, threadSum, Add<accscalar_t>(),
static_cast<accscalar_t>(0));
accscalar_t threadExp = ilpReduce<SumExpFloat, ILP, scalar_t, accscalar_t>(shift, input, classes, SumExpFloat<scalar_t, accscalar_t>(max_k), static_cast<accscalar_t>(0));
accscalar_t sumAll = blockReduce<Add, accscalar_t>(
sdata, threadExp, Add<accscalar_t>(), static_cast<accscalar_t>(0));
Epilogue<scalar_t, accscalar_t, outscalar_t> epilogue(max_k, sumAll);
// calculate per element loss with label smoothing
// reserve max + log_sum_exp for bprop
if (threadIdx.x == 0) {
accscalar_t lse = max_k + std::log(sumAll);
accscalar_t log_prob = (label >= 0 && label < classes) ? epilogue(static_cast<accscalar_t>(input[label])) : 0.f;
losses[blockIdx.x] = (lse - sum_k / total_classes) * smoothing - log_prob * (1 - smoothing);
max_log_sum_exp[blockIdx.x] = lse;
}
}
template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t>
__device__ __forceinline__ void
apply(scalar_t *gradInput,
scalar_t *logits,
outscalar_t *max_log_sum_exp,
outscalar_t *gradOutput,
int64_t *labels,
const float smoothing,
int classes,
const int total_classes)
{
accscalar_t smooth_positives = 1.0 - smoothing;
accscalar_t smooth_negatives = smoothing / total_classes;
accscalar_t tmpGradOutput = gradOutput[blockIdx.x];
int64_t label = labels[blockIdx.x];
accscalar_t coeff = max_log_sum_exp[blockIdx.x];
int offset = threadIdx.x;
int last = classes % (ILP * blockDim.x);
for (; offset < classes - last; offset += blockDim.x * ILP) {
accscalar_t tmpLogits[ILP];
#pragma unroll
for (int j = 0; j < ILP; ++j) {
tmpLogits[j] = static_cast<accscalar_t>(logits[offset + j * blockDim.x]);
}
#pragma unroll
for (int j = 0; j < ILP; ++j)
gradInput[offset + j * blockDim.x] = tmpGradOutput * (
std::exp(tmpLogits[j] - coeff) - static_cast<accscalar_t>(
(offset + j * blockDim.x == label) ? 1 : 0) *
smooth_positives - smooth_negatives);
}
for (; offset < classes; offset += blockDim.x)
gradInput[offset] = tmpGradOutput * (std::exp(
static_cast<accscalar_t>(logits[offset]) - coeff) -
static_cast<accscalar_t>((offset == label) ? 1 : 0) *
smooth_positives - smooth_negatives);
}
template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t>
__device__ __forceinline__ void
aligned_apply(int shift,
scalar_t *gradInput,
scalar_t *logits,
outscalar_t *max_log_sum_exp,
outscalar_t *gradOutput,
int64_t *labels,
const float smoothing,
int classes,
const int total_classes)
{
accscalar_t smooth_positives = 1.0 - smoothing;
accscalar_t smooth_negatives = smoothing / total_classes;
accscalar_t tmpGradOutput = gradOutput[blockIdx.x];
int64_t label = labels[blockIdx.x];
accscalar_t coeff = max_log_sum_exp[blockIdx.x];
int offset = threadIdx.x;
// shift and do 1
if(shift > 0){
logits -= shift;
gradInput -= shift;
classes += shift;
if(threadIdx.x >= shift){
gradInput[offset] = tmpGradOutput * (std::exp(
static_cast<accscalar_t>(logits[offset]) - coeff) -
static_cast<accscalar_t>(((offset - shift) == label) ? 1 : 0) *
smooth_positives - smooth_negatives);
}
classes -= blockDim.x;
gradInput += blockDim.x;
logits += blockDim.x;
shift -= blockDim.x;
}
int last = classes % (ILP * blockDim.x);
typedef typename std::aligned_storage<ILP*sizeof(scalar_t), ILP*alignof(scalar_t)>::type LoadT;
// input
scalar_t v[ILP];
LoadT* value = reinterpret_cast<LoadT*>(&v);
// output
scalar_t r[ILP];
LoadT* result = reinterpret_cast<LoadT*>(&r);
for (; offset * ILP < (classes - last); offset += blockDim.x) {
*value = reinterpret_cast<LoadT*>(logits)[offset];
#pragma unroll
for (int j = 0; j < ILP; ++j) {
r[j] = tmpGradOutput * (std::exp(
static_cast<accscalar_t>(v[j]) - coeff) -
static_cast<accscalar_t>(((ILP * offset + j - shift) == label) ? 1 : 0) *
smooth_positives - smooth_negatives);
}
reinterpret_cast<LoadT*>(gradInput)[offset] = *result;
}
offset = classes - last + threadIdx.x;
for (; offset < classes; offset += blockDim.x)
gradInput[offset] = tmpGradOutput * (std::exp(
static_cast<accscalar_t>(logits[offset]) - coeff) -
static_cast<accscalar_t>(((offset - shift) == label) ? 1 : 0) *
smooth_positives - smooth_negatives);
}
template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t, template<typename, typename, typename> class Epilogue>
__global__ void
cunn_SoftMaxXEntropyBackward(
scalar_t *gradInput,
scalar_t *logits,
outscalar_t *max_log_sum_exp,
outscalar_t *gradOutput,
int64_t *labels,
const float smoothing,
int classes,
const int total_classes)
{
gradInput += blockIdx.x * classes;
logits += blockIdx.x * classes;
// Do vectorized load/store when input/output have same alignment
const int shift = ((uint64_t)logits) % ALIGN_BYTES / sizeof(scalar_t);
const int shift_ = ((uint64_t)gradInput) % ALIGN_BYTES / sizeof(scalar_t);
if (shift == shift_){
aligned_apply<ILP, scalar_t, accscalar_t, outscalar_t>(shift, gradInput, logits, max_log_sum_exp, gradOutput, labels, smoothing, classes, total_classes <= 0 ? classes : total_classes);
}
else {
apply<ILP, scalar_t, accscalar_t, outscalar_t>(gradInput, logits, max_log_sum_exp, gradOutput, labels, smoothing, classes, total_classes <= 0 ? classes : total_classes);
}
}
template<template<typename, typename, typename> class Epilogue>
std::vector<Tensor> host_softmax_xentropy(
const Tensor & input_,
const Tensor & labels_,
const float smoothing,
const int total_classes) {
// For tensor parallel cross entropy with smoothing, we want to pass in the total number
// of classes so that smoothing can be applied correctly. If total_classes=-1, use the
// last dimension of the input tensor.
AT_ASSERTM(labels_.scalar_type() == ScalarType::Long,"Label type should be CUDA Long");
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)input_.get_device()};
auto input = input_.contiguous();
Tensor max_log_sum_exp = at::empty_like(labels_, input.options().dtype(ScalarType::Float));
Tensor losses = at::empty_like(labels_, input_.options().dtype(ScalarType::Float));
static_assert(std::is_same<acc_type<at::Half, true>, float>::value ||
std::is_same<acc_type<at::Half, true>, double>::value,
"accscalar_t for half should be float or double");
AT_ASSERTM(input.dim() == 2, "Currently only 2 dim input supported");
AT_ASSERTM(labels_.dim() == 1, "Labels should be 1 dimensional");
AT_ASSERTM(input.size(0) == labels_.size(0), "Input and label should have same number of examples");
AT_ASSERTM(input.numel() > 0, "Number of classes in input should not be 0");
const int64_t dim = 1;
int64_t outer_size = 1;
int64_t dim_size = input.size(dim);
int64_t inner_size = 1;
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
for (int64_t i = 0; i < dim; ++i)
outer_size *= input.size(i);
for (int64_t i = dim + 1; i < input.dim(); ++i)
inner_size *= input.size(i);
// This kernel spawns a block per each element in the batch.
// XXX: it assumes that inner_size == 1
TORCH_CHECK(inner_size == 1, "Currently only inner size 1 supported");
dim3 grid(outer_size);
using namespace at;
DISPATCH_FLOAT_AND_HALF_AND_BF16(input.scalar_type(), 0, "host_softmax_xentropy",
using accscalar_t = at::acc_type<scalar_t_0, true>;
const int ILP = sizeof(float4)/sizeof(scalar_t_0);
dim3 block = SoftMax_getBlockSize(ILP, dim_size);
cunn_SoftMaxXEntropyForward<ILP, scalar_t_0, accscalar_t, accscalar_t, Epilogue>
<<<grid, block, 2 * block.x * sizeof(accscalar_t), stream>>>(
losses.data_ptr<accscalar_t>(), max_log_sum_exp.data_ptr<accscalar_t>(),
input.data_ptr<scalar_t_0>(), labels_.data_ptr<int64_t>(),
dim_size, smoothing, total_classes <= 0 ? dim_size : total_classes
);
);
C10_CUDA_CHECK(cudaGetLastError());
std::vector<at::Tensor> ret = {losses, max_log_sum_exp};
return ret;
}
template<template<typename, typename, typename> class Epilogue>
Tensor host_softmax_xentropy_backward(
const at::Tensor &grad_loss,
at::Tensor &logits_,
const at::Tensor &max_log_sum_exp,
const at::Tensor &labels,
const float smoothing,
bool inplace,
const int total_classes) {
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)grad_loss.get_device()};
const int64_t dim = 1;
Tensor gI = inplace ? logits_ : at::empty_like(logits_);
if (grad_loss.numel() == 0) {
return gI;
}
auto grad = grad_loss.contiguous();
auto logits = logits_.contiguous();
static_assert(std::is_same<acc_type<at::Half, true>, float>::value ||
std::is_same<acc_type<at::Half, true>, double>::value,
"accscalar_t for half should be float or double");
if (grad.dim() == 0) grad = grad.view(1);
AT_ASSERTM(logits_.dim() == 2, "Currently only 2 dim input supported");
AT_ASSERTM(labels.dim() == 1, "Labels should be 1 dimensional");
AT_ASSERTM(logits_.numel() > 0, "Number of classes in input should not be 0");
AT_ASSERTM(logits_.size(0) == labels.size(0), "Input and label should have same number of examples");
AT_ASSERTM(labels.size(0) == grad.size(0), "Label and loss should have same number of examples");
int64_t outer_size = 1;
int64_t dim_size = logits.size(dim);
int64_t inner_size = 1;
for (int64_t i = 0; i < dim; ++i)
outer_size *= logits.size(i);
for (int64_t i = dim + 1; i < logits.dim(); ++i)
inner_size *= logits.size(i);
// See descriptions of kernels above.
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
TORCH_CHECK(inner_size == 1, "Currently only inner size 1 supported");
dim3 grid(outer_size);
DISPATCH_FLOAT_AND_HALF_AND_BF16(gI.scalar_type(), 0, "host_softmax_xentropy_backward",
using accscalar_t = acc_type<scalar_t_0, true>;
const int ILP = sizeof(float4)/sizeof(scalar_t_0);
dim3 block = SoftMax_getBlockSize(ILP, dim_size);
cunn_SoftMaxXEntropyBackward<ILP, scalar_t_0, accscalar_t, accscalar_t, Epilogue>
<<<grid, block, block.x * sizeof(accscalar_t), stream>>>(
gI.data_ptr<scalar_t_0>(), logits.data_ptr<scalar_t_0>(),
max_log_sum_exp.data_ptr<accscalar_t>(),
grad.data_ptr<accscalar_t>(), labels.data_ptr<int64_t>(),
smoothing, dim_size, total_classes
);
);
C10_CUDA_CHECK(cudaGetLastError());
return gI;
}
std::vector<Tensor> softmax_xentropy_cuda(const Tensor &input, const Tensor &labels, const float smoothing, const int total_classes){
return host_softmax_xentropy<LogSoftMaxForwardEpilogue>(input, labels, smoothing, total_classes);
}
at::Tensor softmax_xentropy_backward_cuda(
const at::Tensor &grad_loss,
at::Tensor &logits,
const at::Tensor &max_log_sum_exp,
const at::Tensor &labels,
const float smoothing,
const bool inplace,
const int total_classes) {
AT_ASSERTM((grad_loss.scalar_type() == ScalarType::Float), "expected grad types to be at::Float");
return host_softmax_xentropy_backward<LogSoftMaxBackwardEpilogue>(grad_loss, logits, max_log_sum_exp, labels, smoothing, inplace, total_classes);
}
|