File size: 26,543 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
// Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/csrc/xentropy/xentropy_kernel.cu
// TD [2022-09-17]: We make it work for bfloat16, and add an option to do the backward inplace (to save memory).
/**
 * From PyTorch:
 *
 * Copyright (c) 2016-     Facebook, Inc            (Adam Paszke)
 * Copyright (c) 2014-     Facebook, Inc            (Soumith Chintala)
 * Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
 * Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
 * Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
 * Copyright (c) 2011-2013 NYU                      (Clement Farabet)
 * Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
 * Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
 * Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
 *
 * From Caffe2:
 *
 * Copyright (c) 2016-present, Facebook Inc. All rights reserved.
 *
 * All contributions by Facebook:
 * Copyright (c) 2016 Facebook Inc.
 *
 * All contributions by Google:
 * Copyright (c) 2015 Google Inc.
 * All rights reserved.
 *
 * All contributions by Yangqing Jia:
 * Copyright (c) 2015 Yangqing Jia
 * All rights reserved.
 *
 * All contributions from Caffe:
 * Copyright(c) 2013, 2014, 2015, the respective contributors
 * All rights reserved.
 *
 * All other contributions:
 * Copyright(c) 2015, 2016 the respective contributors
 * All rights reserved.
 *
 * Caffe2 uses a copyright model similar to Caffe: each contributor holds
 * copyright over their contributions to Caffe2. The project versioning records
 * all such contribution and copyright details. If a contributor wants to further
 * mark their specific copyright on a particular contribution, they should
 * indicate their copyright solely in the commit message of the change when it is
 * committed.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
 *    and IDIAP Research Institute nor the names of its contributors may be
 *    used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include <ATen/AccumulateType.h>
#include <ATen/cuda/NumericLimits.cuh>

// https://github.com/NVIDIA/apex/blob/master/csrc/type_shim.h
// #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, LEVEL, NAME, ...) \
  switch(TYPE) \
  { \
    case at::ScalarType::Float: \
    { \
      using scalar_t_##LEVEL = float; \
      __VA_ARGS__; \
      break; \
    } \
    case at::ScalarType::Half: \
    { \
      using scalar_t_##LEVEL = at::Half; \
      __VA_ARGS__; \
      break; \
    } \
    case at::ScalarType::BFloat16: \
    { \
      using scalar_t_##LEVEL = at::BFloat16; \
      __VA_ARGS__; \
      break; \
    } \
    default: \
      AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'");  \
  }
// #else
// #define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, LEVEL, NAME, ...) \
//   switch(TYPE) \
//   { \
//     case at::ScalarType::Float: \
//     { \
//       using scalar_t_##LEVEL = float; \
//       __VA_ARGS__; \
//       break; \
//     } \
//     case at::ScalarType::Half: \
//     { \
//       using scalar_t_##LEVEL = at::Half; \
//       __VA_ARGS__; \
//       break; \
//     } \
//     default: \
//       AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'");  \
//   }
// #endif

#define ALIGN_BYTES 16

using Tensor = at::Tensor;
using TensorList = at::TensorList;
using ScalarType = at::ScalarType;
using at::acc_type;

template<typename T, typename AccumT, typename OutT>
struct LogSoftMaxForwardEpilogue {
  __device__ __forceinline__ LogSoftMaxForwardEpilogue(AccumT max_input, AccumT sum)
    : logsum(max_input + std::log(sum)) {}

  __device__ __forceinline__ LogSoftMaxForwardEpilogue(AccumT max_log_sum_exp)
    : logsum(max_log_sum_exp) {}

  __device__ __forceinline__ OutT operator()(T input) const {
    return static_cast<OutT>(input - logsum);
  }

  const AccumT logsum;
};

template<typename T, typename AccumT, typename OutT>
struct LogSoftMaxBackwardEpilogue {
  __device__ __forceinline__ LogSoftMaxBackwardEpilogue(AccumT sum)
    : sum(sum) {}

  __device__ __forceinline__ T operator()(OutT gradOutput, OutT output) const {
    return static_cast<T>(gradOutput - std::exp(static_cast<AccumT>(output)) * sum);
  }

  const AccumT sum;
};



const int max_threads = 1024;

inline dim3 SoftMax_getBlockSize(int ILP, uint64_t dim_size) {
  uint64_t block_size = 1;
  uint64_t max_block_size = std::min(dim_size / ILP, static_cast<uint64_t>(max_threads));
  while (block_size < (max_block_size/2)) block_size *= 2;
  // Launch at least a single warp - the kernel assumes that.
  block_size = std::max(block_size, static_cast<uint64_t>(32));
  return dim3(block_size);
}

template<typename T>
struct Add {
  __device__ __forceinline__ T operator()(T a, T b) const {
    return a + b;
  }
};

template<typename T>
struct Max {
  __device__ __forceinline__ T operator()(T a, T b) const {
    return a < b ? b : a;
  }
};


////////////////////////////////////////////////////////////////////////////////
// Regular kernel (fast when dim_size is large; requires inner_size == 1)
////////////////////////////////////////////////////////////////////////////////


template <typename T, typename AccumT>
struct MaxFloat
{
  __device__ __forceinline__ AccumT operator()(AccumT max, T v) const {
    return ::max(max, (AccumT)v);
  }
};

template<typename T, typename AccumT>
struct AddFloat
{
  __device__ __forceinline__ AccumT operator()(AccumT sum, T v) const {
    return sum + v;
  }
};

template<typename T, typename AccumT>
struct SumExpFloat
{
  __device__ __forceinline__ SumExpFloat(AccumT v)
    : max_k(v) {}

  __device__ __forceinline__ AccumT operator()(AccumT sum, T v) const {
    return sum + std::exp(v - max_k);
  }

  const AccumT max_k;
};

template <template<typename> class Reduction, typename AccumT>
__device__ __forceinline__ AccumT
blockReduce(AccumT* smem, AccumT val,
            const Reduction<AccumT>& r,
            AccumT defaultVal)
{
  // To avoid RaW races from chaining blockReduce calls together, we need a sync here
  __syncthreads();

  smem[threadIdx.x] = val;

  __syncthreads();

  AccumT warpVal = defaultVal;

  // First warp will perform per-warp reductions for the remaining warps
  uint32_t mask = (((uint64_t)1) << (blockDim.x / 32)) - 1;
  if (threadIdx.x < 32) {
    int lane = threadIdx.x % 32;
    if (lane < blockDim.x / 32) {
#pragma unroll
      for (int i = 0; i < 32; ++i) {
        warpVal = r(warpVal, smem[lane * 32 + i]);
      }
      __syncwarp(mask);
      smem[lane] = warpVal;
    }
  }

  __syncthreads();

  // First thread will perform a reduction of the above per-warp reductions
  AccumT blockVal = defaultVal;

  if (threadIdx.x == 0) {
    for (int i = 0; i < blockDim.x / 32; ++i) {
      blockVal = r(blockVal, smem[i]);
    }
    smem[0] = blockVal;
  }

  // Sync and broadcast
  __syncthreads();
  return smem[0];
}

template <template<typename> class Reduction1, template<typename> class Reduction2, typename AccumT>
__device__ __forceinline__ void
blockReduce(AccumT* smem,
            AccumT* reducVal1,
            AccumT val1,
            const Reduction1<AccumT>& r1,
            AccumT defaultVal1,
            AccumT* reducVal2,
            AccumT val2,
            const Reduction2<AccumT>& r2,
            AccumT defaultVal2)
{
  // To avoid RaW races from chaining blockReduce calls together, we need a sync here
  __syncthreads();

  smem[threadIdx.x] = val1;
  smem[blockDim.x + threadIdx.x] = val2;

  __syncthreads();

  AccumT warpVal1 = defaultVal1;
  AccumT warpVal2 = defaultVal2;

  // First warp will perform per-warp reductions for the remaining warps
  uint32_t mask = (((uint64_t)1) << (blockDim.x / 32)) - 1;
  if (threadIdx.x < 32) {
    int lane = threadIdx.x % 32;
    if (lane < blockDim.x / 32) {
#pragma unroll
      for (int i = 0; i < 32; ++i) {
        warpVal1 = r1(warpVal1, smem[lane * 32 + i]);
        warpVal2 = r2(warpVal2, smem[lane * 32 + i + blockDim.x]);
      }
      __syncwarp(mask);
      smem[lane] = warpVal1;
      smem[lane + blockDim.x] = warpVal2;
    }
  }

  __syncthreads();

  // First thread will perform a reduction of the above per-warp reductions
  AccumT blockVal1 = defaultVal1;
  AccumT blockVal2 = defaultVal2;

  if (threadIdx.x == 0) {
    for (int i = 0; i < blockDim.x / 32; ++i) {
      blockVal1 = r1(blockVal1, smem[i]);
      blockVal2 = r2(blockVal2, smem[i + blockDim.x]);
    }
    smem[0] = blockVal1;
    smem[blockDim.x] = blockVal2;
  }

  // Sync and broadcast
  __syncthreads();
  *reducVal1 = smem[0];
  *reducVal2 = smem[blockDim.x];
  __syncthreads();
}

template <template<typename, typename> class Reduction, int ILP, typename T, typename AccumT>
__device__ __forceinline__ AccumT
ilpReduce(int shift,
          T* data,
          int size,
          const Reduction<T, AccumT>& r,
          AccumT defaultVal)
{
  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LoadT;
  AccumT threadVal = defaultVal;
  int offset = threadIdx.x;

  // shift and do 1
  if(shift > 0){
    data -= shift;
    size += shift;
    if(threadIdx.x >= shift){
      threadVal = r(threadVal, data[offset]);
    }
    size -= blockDim.x;
    data += blockDim.x;
  }
  int last = size % (ILP * blockDim.x);

  T v[ILP];
  LoadT* value = reinterpret_cast<LoadT*>(&v);

  for (; offset * ILP < (size - last); offset += blockDim.x) {
    *value = reinterpret_cast<LoadT*>(data)[offset];

    for (int j = 0; j < ILP; ++j) {
      threadVal = r(threadVal, v[j]);
    }
  }

  offset = size - last + threadIdx.x;
  // Epilogue
  for (; offset < size; offset += blockDim.x)
    threadVal = r(threadVal, data[offset]);

  return threadVal;
}

template <template<typename, typename> class Reduction1, template<typename, typename> class Reduction2, int ILP, typename T, typename AccumT>
__device__ __forceinline__ void
ilpReduce(int shift,
          T* data,
          int size,
          AccumT* reducVal1,
          const Reduction1<T, AccumT>& r1,
          AccumT defaultVal1,
          AccumT* reducVal2,
          const Reduction2<T, AccumT>& r2,
          AccumT defaultVal2)
{
  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LoadT;

  AccumT threadVal1 = defaultVal1;
  AccumT threadVal2 = defaultVal2;
  int offset = threadIdx.x;

  // shift and do 1
  if(shift > 0){
    data -= shift;
    size += shift;
    if(threadIdx.x >= shift){
      threadVal1 = r1(threadVal1, data[offset]);
      threadVal2 = r2(threadVal2, data[offset]);
    }
    size -= blockDim.x;
    data += blockDim.x;
  }
  int last = size % (ILP * blockDim.x);

  T v[ILP];
  LoadT* value = reinterpret_cast<LoadT*>(&v);

  for (; offset * ILP < (size - last); offset += blockDim.x) {
    *value = reinterpret_cast<LoadT*>(data)[offset];

    for (int j = 0; j < ILP; ++j) {
      threadVal1 = r1(threadVal1, v[j]);
      threadVal2 = r2(threadVal2, v[j]);
    }
  }

  offset = size - last + threadIdx.x;
  // Epilogue
  for (; offset < size; offset += blockDim.x) {
    threadVal1 = r1(threadVal1, data[offset]);
    threadVal2 = r2(threadVal2, data[offset]);
  }

  *reducVal1 = threadVal1;
  *reducVal2 = threadVal2;
}

template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t, template <typename, typename, typename> class Epilogue>
__global__ void
cunn_SoftMaxXEntropyForward(
    accscalar_t *losses,
    outscalar_t *max_log_sum_exp,
    scalar_t *input,
    int64_t *labels,
    int64_t classes,
    const float smoothing,
    const int total_classes)
{
  extern __shared__ unsigned char smem[];
  auto sdata = reinterpret_cast<accscalar_t*>(smem);
  // forward pointers to batch[blockIdx.x]
  // each block handles a sample in the mini-batch
  input += blockIdx.x * classes;
  //output += blockIdx.x * classes;
  const int shift = ((uint64_t)input) % ALIGN_BYTES / sizeof(scalar_t);

  int64_t label = labels[blockIdx.x];

  // find the max and sum
  accscalar_t threadMax, threadSum, max_k, sum_k;
  ilpReduce<MaxFloat, AddFloat, ILP, scalar_t, accscalar_t>(
    shift, input, classes,
    &threadMax, MaxFloat<scalar_t, accscalar_t>(),
    -at::numeric_limits<accscalar_t>::max(),
    &threadSum, AddFloat<scalar_t, accscalar_t>(),
    static_cast<accscalar_t>(0));

  blockReduce<Max, Add, accscalar_t>(
      sdata,
      &max_k, threadMax, Max<accscalar_t>(),
      -at::numeric_limits<accscalar_t>::max(),
      &sum_k, threadSum, Add<accscalar_t>(),
      static_cast<accscalar_t>(0));

  accscalar_t threadExp = ilpReduce<SumExpFloat, ILP, scalar_t, accscalar_t>(shift, input, classes, SumExpFloat<scalar_t, accscalar_t>(max_k), static_cast<accscalar_t>(0));
  accscalar_t sumAll = blockReduce<Add, accscalar_t>(
      sdata, threadExp, Add<accscalar_t>(), static_cast<accscalar_t>(0));

  Epilogue<scalar_t, accscalar_t, outscalar_t> epilogue(max_k, sumAll);

  // calculate per element loss with label smoothing
  // reserve max + log_sum_exp for bprop
  if (threadIdx.x == 0) {
    accscalar_t lse = max_k + std::log(sumAll);
    accscalar_t log_prob = (label >= 0 && label < classes) ? epilogue(static_cast<accscalar_t>(input[label])) : 0.f;
    losses[blockIdx.x] = (lse - sum_k / total_classes) * smoothing - log_prob * (1 - smoothing);
    max_log_sum_exp[blockIdx.x] = lse;
  }
}

template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t>
__device__ __forceinline__ void
apply(scalar_t *gradInput,
      scalar_t *logits,
      outscalar_t *max_log_sum_exp,
      outscalar_t *gradOutput,
      int64_t *labels,
      const float smoothing,
      int classes,
      const int total_classes)
{
  accscalar_t smooth_positives = 1.0 - smoothing;
  accscalar_t smooth_negatives = smoothing / total_classes;
  accscalar_t tmpGradOutput = gradOutput[blockIdx.x];
  int64_t label = labels[blockIdx.x];
  accscalar_t coeff = max_log_sum_exp[blockIdx.x];

  int offset = threadIdx.x;
  int last = classes % (ILP * blockDim.x);

  for (; offset < classes - last; offset += blockDim.x * ILP) {
    accscalar_t tmpLogits[ILP];

#pragma unroll
    for (int j = 0; j < ILP; ++j) {
      tmpLogits[j] = static_cast<accscalar_t>(logits[offset + j * blockDim.x]);
    }

#pragma unroll
    for (int j = 0; j < ILP; ++j)
      gradInput[offset + j * blockDim.x] = tmpGradOutput * (
        std::exp(tmpLogits[j] - coeff) - static_cast<accscalar_t>(
          (offset + j * blockDim.x == label) ? 1 : 0) *
        smooth_positives - smooth_negatives);
  }

  for (; offset < classes; offset += blockDim.x)
    gradInput[offset] = tmpGradOutput * (std::exp(
        static_cast<accscalar_t>(logits[offset]) - coeff) -
        static_cast<accscalar_t>((offset == label) ? 1 : 0) *
        smooth_positives - smooth_negatives);
}


template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t>
__device__ __forceinline__ void
aligned_apply(int shift,
              scalar_t *gradInput,
              scalar_t *logits,
              outscalar_t *max_log_sum_exp,
              outscalar_t *gradOutput,
              int64_t *labels,
              const float smoothing,
              int classes,
              const int total_classes)
{
  accscalar_t smooth_positives = 1.0 - smoothing;
  accscalar_t smooth_negatives = smoothing / total_classes;
  accscalar_t tmpGradOutput = gradOutput[blockIdx.x];
  int64_t label = labels[blockIdx.x];
  accscalar_t coeff = max_log_sum_exp[blockIdx.x];

  int offset = threadIdx.x;

  // shift and do 1
  if(shift > 0){
    logits -= shift;
    gradInput -= shift;
    classes += shift;
    if(threadIdx.x >= shift){
      gradInput[offset] = tmpGradOutput * (std::exp(
        static_cast<accscalar_t>(logits[offset]) - coeff) -
        static_cast<accscalar_t>(((offset - shift) == label) ? 1 : 0) *
        smooth_positives - smooth_negatives);
    }
    classes -= blockDim.x;
    gradInput += blockDim.x;
    logits += blockDim.x;
    shift -= blockDim.x;
  }

  int last = classes % (ILP * blockDim.x);

  typedef typename std::aligned_storage<ILP*sizeof(scalar_t), ILP*alignof(scalar_t)>::type LoadT;
  // input
  scalar_t v[ILP];
  LoadT* value = reinterpret_cast<LoadT*>(&v);
  // output
  scalar_t r[ILP];
  LoadT* result = reinterpret_cast<LoadT*>(&r);

  for (; offset * ILP < (classes - last); offset += blockDim.x) {
    *value = reinterpret_cast<LoadT*>(logits)[offset];

#pragma unroll
    for (int j = 0; j < ILP; ++j) {
      r[j] = tmpGradOutput * (std::exp(
          static_cast<accscalar_t>(v[j]) - coeff) -
          static_cast<accscalar_t>(((ILP * offset + j - shift) == label) ? 1 : 0) *
          smooth_positives - smooth_negatives);
    }
    reinterpret_cast<LoadT*>(gradInput)[offset] = *result;
  }

  offset = classes - last + threadIdx.x;
  for (; offset < classes; offset += blockDim.x)
    gradInput[offset] = tmpGradOutput * (std::exp(
        static_cast<accscalar_t>(logits[offset]) - coeff) -
        static_cast<accscalar_t>(((offset - shift) == label) ? 1 : 0) *
        smooth_positives - smooth_negatives);

}

template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t, template<typename, typename, typename> class Epilogue>
__global__ void
cunn_SoftMaxXEntropyBackward(
    scalar_t *gradInput,
    scalar_t *logits,
    outscalar_t *max_log_sum_exp,
    outscalar_t *gradOutput,
    int64_t *labels,
    const float smoothing,
    int classes,
    const int total_classes)
{
  gradInput += blockIdx.x * classes;
  logits += blockIdx.x * classes;

  // Do vectorized load/store when input/output have same alignment
  const int shift = ((uint64_t)logits) % ALIGN_BYTES / sizeof(scalar_t);
  const int shift_ = ((uint64_t)gradInput) % ALIGN_BYTES / sizeof(scalar_t);
  if (shift == shift_){
    aligned_apply<ILP, scalar_t, accscalar_t, outscalar_t>(shift, gradInput, logits, max_log_sum_exp, gradOutput, labels, smoothing, classes, total_classes <= 0 ? classes : total_classes);
  }
  else {
    apply<ILP, scalar_t, accscalar_t, outscalar_t>(gradInput, logits, max_log_sum_exp, gradOutput, labels, smoothing, classes, total_classes <= 0 ? classes : total_classes);
  }

}

template<template<typename, typename, typename> class Epilogue>
std::vector<Tensor> host_softmax_xentropy(
        const Tensor & input_,
        const Tensor & labels_,
        const float smoothing,
        const int total_classes) {
  // For tensor parallel cross entropy with smoothing, we want to pass in the total number
  // of classes so that smoothing can be applied correctly. If total_classes=-1, use the
  // last dimension of the input tensor.
  AT_ASSERTM(labels_.scalar_type() == ScalarType::Long,"Label type should be CUDA Long");

  // Otherwise the kernel will be launched from cuda:0 device
  // Cast to char to avoid compiler warning about narrowing
  at::cuda::CUDAGuard device_guard{(char)input_.get_device()};

  auto input = input_.contiguous();
  Tensor max_log_sum_exp = at::empty_like(labels_, input.options().dtype(ScalarType::Float));
  Tensor losses = at::empty_like(labels_, input_.options().dtype(ScalarType::Float));

  static_assert(std::is_same<acc_type<at::Half, true>, float>::value ||
    std::is_same<acc_type<at::Half, true>, double>::value,
    "accscalar_t for half should be float or double");
  AT_ASSERTM(input.dim() == 2, "Currently only 2 dim input supported");
  AT_ASSERTM(labels_.dim() == 1, "Labels should be 1 dimensional");
  AT_ASSERTM(input.size(0) == labels_.size(0), "Input and label should have same number of examples");
  AT_ASSERTM(input.numel() > 0, "Number of classes in input should not be 0");

  const int64_t dim = 1;
  int64_t outer_size = 1;
  int64_t dim_size = input.size(dim);
  int64_t inner_size = 1;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  for (int64_t i = 0; i < dim; ++i)
    outer_size *= input.size(i);
  for (int64_t i = dim + 1; i < input.dim(); ++i)
    inner_size *= input.size(i);
  // This kernel spawns a block per each element in the batch.
  // XXX: it assumes that inner_size == 1
  TORCH_CHECK(inner_size == 1, "Currently only inner size 1 supported");

  dim3 grid(outer_size);

  using namespace at;
  DISPATCH_FLOAT_AND_HALF_AND_BF16(input.scalar_type(), 0, "host_softmax_xentropy",
    using accscalar_t = at::acc_type<scalar_t_0, true>;
    const int ILP = sizeof(float4)/sizeof(scalar_t_0);
    dim3 block = SoftMax_getBlockSize(ILP, dim_size);
    cunn_SoftMaxXEntropyForward<ILP, scalar_t_0, accscalar_t, accscalar_t, Epilogue>
      <<<grid, block, 2 * block.x * sizeof(accscalar_t), stream>>>(
        losses.data_ptr<accscalar_t>(), max_log_sum_exp.data_ptr<accscalar_t>(),
        input.data_ptr<scalar_t_0>(), labels_.data_ptr<int64_t>(),
        dim_size, smoothing, total_classes <= 0 ? dim_size : total_classes
    );
  );

  C10_CUDA_CHECK(cudaGetLastError());

  std::vector<at::Tensor> ret = {losses, max_log_sum_exp};
  return ret;
}

template<template<typename, typename, typename> class Epilogue>
Tensor host_softmax_xentropy_backward(
    const at::Tensor &grad_loss,
    at::Tensor &logits_,
    const at::Tensor &max_log_sum_exp,
    const at::Tensor &labels,
    const float smoothing,
    bool inplace,
    const int total_classes) {
  // Otherwise the kernel will be launched from cuda:0 device
  // Cast to char to avoid compiler warning about narrowing
  at::cuda::CUDAGuard device_guard{(char)grad_loss.get_device()};

  const int64_t dim = 1;
  Tensor gI = inplace ? logits_ : at::empty_like(logits_);
  if (grad_loss.numel() == 0) {
    return gI;
  }

  auto grad = grad_loss.contiguous();
  auto logits = logits_.contiguous();

  static_assert(std::is_same<acc_type<at::Half, true>, float>::value ||
    std::is_same<acc_type<at::Half, true>, double>::value,
    "accscalar_t for half should be float or double");
  if (grad.dim() == 0) grad = grad.view(1);

  AT_ASSERTM(logits_.dim() == 2, "Currently only 2 dim input supported");
  AT_ASSERTM(labels.dim() == 1, "Labels should be 1 dimensional");
  AT_ASSERTM(logits_.numel() > 0, "Number of classes in input should not be 0");
  AT_ASSERTM(logits_.size(0) == labels.size(0), "Input and label should have same number of examples");
  AT_ASSERTM(labels.size(0) == grad.size(0), "Label and loss should have same number of examples");

  int64_t outer_size = 1;
  int64_t dim_size = logits.size(dim);
  int64_t inner_size = 1;
  for (int64_t i = 0; i < dim; ++i)
    outer_size *= logits.size(i);
  for (int64_t i = dim + 1; i < logits.dim(); ++i)
    inner_size *= logits.size(i);
  // See descriptions of kernels above.
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  TORCH_CHECK(inner_size == 1, "Currently only inner size 1 supported");

  dim3 grid(outer_size);

  DISPATCH_FLOAT_AND_HALF_AND_BF16(gI.scalar_type(), 0, "host_softmax_xentropy_backward",
    using accscalar_t = acc_type<scalar_t_0, true>;
    const int ILP = sizeof(float4)/sizeof(scalar_t_0);
    dim3 block = SoftMax_getBlockSize(ILP, dim_size);
    cunn_SoftMaxXEntropyBackward<ILP, scalar_t_0, accscalar_t, accscalar_t, Epilogue>
      <<<grid, block, block.x * sizeof(accscalar_t), stream>>>(
        gI.data_ptr<scalar_t_0>(), logits.data_ptr<scalar_t_0>(),
        max_log_sum_exp.data_ptr<accscalar_t>(),
        grad.data_ptr<accscalar_t>(), labels.data_ptr<int64_t>(),
        smoothing, dim_size, total_classes
    );
  );

  C10_CUDA_CHECK(cudaGetLastError());
  return gI;
}

std::vector<Tensor> softmax_xentropy_cuda(const Tensor &input, const Tensor &labels, const float smoothing, const int total_classes){
  return host_softmax_xentropy<LogSoftMaxForwardEpilogue>(input, labels, smoothing, total_classes);
}

at::Tensor softmax_xentropy_backward_cuda(
    const at::Tensor &grad_loss,
    at::Tensor &logits,
    const at::Tensor &max_log_sum_exp,
    const at::Tensor &labels,
    const float smoothing,
    const bool inplace,
    const int total_classes) {
  AT_ASSERTM((grad_loss.scalar_type() == ScalarType::Float), "expected grad types to be at::Float");
  return host_softmax_xentropy_backward<LogSoftMaxBackwardEpilogue>(grad_loss, logits, max_log_sum_exp, labels, smoothing, inplace, total_classes);
}