Spaces:
Sleeping
Sleeping
File size: 7,465 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/fmha.py
import flash_attn_cuda
import torch
import torch.nn as nn
def convert_blockmask(blockmask, causal):
"""Convert from the 0-1 format to the format used by the CUDA code.
0 means the block is skipped.
nonzero means the block is not skipped.
Argument:
blockmask: (row, col): a 0-1 tensor
Return:
blockmask_converted: (col, row), dtype torch.int32: for each column, it contains the row
indices of the nonzero blocks, padded with -1 to reach length @row.
The indices are multiplied by 4, with the smallest bit used to encode whether
it is the first nonzero in its row, and the 2nd smallest bit to encode whether it is
the last nonzero in its row..
"""
assert not causal
# TD [2022-05-13]: The indexing and sorting is very tricky
nrow, ncol = blockmask.shape
# Sort does not support bool on CUDA
blockmask = blockmask.to(dtype=torch.uint8)
nonzero_val, nonzero_sorted_rowidx = blockmask.sort(dim=0, stable=True, descending=True)
nonzero_unsorted_rowidx = nonzero_sorted_rowidx.argsort(dim=0)
last_nonzero_col_per_row = blockmask.sort(dim=-1, stable=True).indices[:, -1]
last_nonzero_col_per_row_after_sort = nonzero_unsorted_rowidx[
torch.arange(nrow, device=blockmask.device), last_nonzero_col_per_row
]
first_nonzero_col_per_row = blockmask.sort(dim=-1, stable=True, descending=True).indices[:, 0]
first_nonzero_col_per_row_after_sort = nonzero_unsorted_rowidx[
torch.arange(nrow, device=blockmask.device), first_nonzero_col_per_row
]
nonzero_idx = nonzero_sorted_rowidx * 4
nonzero_idx[last_nonzero_col_per_row_after_sort, last_nonzero_col_per_row] += 2
nonzero_idx[first_nonzero_col_per_row_after_sort, first_nonzero_col_per_row] += 1
nonzero_idx[nonzero_val == 0] = -1
return nonzero_idx.T.contiguous().to(dtype=torch.int32)
def _flash_blocksparse_attn_forward(
qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal, return_softmax
):
context, softmax_lse, *rest = flash_attn_cuda.fwd_block(
qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal, return_softmax, None
)
# if context.isnan().any() or softmax_lse.isnan().any():
# breakpoint()
S_dmask = rest[0] if return_softmax else None
return context, softmax_lse, S_dmask
def _flash_blocksparse_attn_backward(
dout,
qkv,
out,
S_dmask,
softmax_lse,
cu_seqlens,
blockmask,
dropout_p,
max_s,
softmax_scale,
causal,
):
dqkv, dp, softmax_d = flash_attn_cuda.bwd_block(
dout,
qkv,
out,
S_dmask,
softmax_lse,
cu_seqlens,
blockmask,
dropout_p,
softmax_scale,
max_s,
causal,
None,
)
# if dqkv.isnan().any() or softmax_d.isnan().any():
# breakpoint()
return dqkv
class FlashBlocksparseAttnFun(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal):
# Save rng_state because the backward pass will regenerate the dropout mask
rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
context, softmax_lse, S_dmask = _flash_blocksparse_attn_forward(
qkv,
cu_seqlens,
blockmask,
dropout_p,
max_s,
softmax_scale,
causal=causal,
return_softmax=False,
)
ctx.save_for_backward(qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state)
ctx.dropout_p = dropout_p
ctx.max_s = max_s
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return context
@staticmethod
def backward(ctx, dout):
qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state = ctx.saved_tensors
if rng_state is not None:
cur_rng_state = torch.cuda.get_rng_state()
torch.cuda.set_rng_state(rng_state)
# S_dmask is None, temporarily use another tensor just to get it running
dqkv = _flash_blocksparse_attn_backward(
dout,
qkv,
context,
context,
softmax_lse,
cu_seqlens,
blockmask,
ctx.dropout_p,
ctx.max_s,
ctx.softmax_scale,
ctx.causal,
)
if rng_state is not None:
torch.cuda.set_rng_state(cur_rng_state)
return dqkv, None, None, None, None, None, None, None
# We duplicate code to return both the output and the softmax for testing
# Returning both makes backward a bit slower, so we want to keep using the other version for speed.
class FlashBlocksparseAttnFunWithS(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal):
# Save rng_state because the backward pass is gonna regenerate the dropout mask
rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
context, softmax_lse, S_dmask = _flash_blocksparse_attn_forward(
qkv,
cu_seqlens,
blockmask,
dropout_p,
max_s,
softmax_scale,
causal=causal,
return_softmax=True,
)
ctx.save_for_backward(qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state)
ctx.dropout_p = dropout_p
ctx.max_s = max_s
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return context, S_dmask, softmax_lse
@staticmethod
def backward(ctx, dout, _dS_dmask_ignored, _dsoftmax_sum_ignored):
qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state = ctx.saved_tensors
if rng_state is not None:
cur_rng_state = torch.cuda.get_rng_state()
torch.cuda.set_rng_state(rng_state)
dqkv = _flash_blocksparse_attn_backward(
dout,
qkv,
context,
S_dmask,
softmax_lse,
cu_seqlens,
blockmask,
ctx.dropout_p,
ctx.max_s,
ctx.softmax_scale,
ctx.causal,
)
if rng_state is not None:
torch.cuda.set_rng_state(cur_rng_state)
return dqkv, None, None, None, None, None, None
def flash_blocksparse_attn_func(
qkv,
cu_seqlens,
blockmask,
dropout_p,
max_s,
softmax_scale=None,
causal=False,
return_attn_probs=False,
convert_mask=True,
):
"""dropout_p should be set to 0.0 during evaluation"""
func = FlashBlocksparseAttnFun if not return_attn_probs else FlashBlocksparseAttnFunWithS
if convert_mask:
blockmask = convert_blockmask(blockmask, causal=causal)
return func.apply(qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal)
|